Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы по матем!!.docx
Скачиваний:
3
Добавлен:
26.04.2019
Размер:
600.94 Кб
Скачать

41.Правило Лопиталя.

Рассмотрим способ раскрытия неопределенностей 0 / 0 и ∞ / ∞, который основан на применении производных.

Правило Лопиталя, при 0 / 0.

Пусть функции f(x) и φ(x) непрерывны и дифференцируемы в окрестности точки x0 и обращается в нуль в этой точке: .

Пусть φ (x) ≠ 0 в окрестности точки x0

Если существует предел

,то

Применим к функциям f(x) и φ(x) теорему Коши для отрезка [x0;x], лежащего в окрестности точки x0 , тогда

, где с лежит между x0 и х.

При x→x0 величина с также стремится к х0; перейдем в предыдущем равенстве к пределу:

Так как , то .

Поэтому

(предел отношения двух бесконечно малых равен пределу отношения их производных, если последний существует)

Правило Лопиталя, при ∞ / ∞.

Пусть функции f(x) и φ(x) непрерывны и дифференцируемы в окрестности точки x0 (кроме точки x0), в этой окрестности

Если существует предел

,то

Неопределенности вида 0∙∞ ; ∞-∞ ; 1 ; ∞0 ; 00 сводятся к двум основным.

Например, 0∙∞

Пусть f(x)→0, φ(x)→∞ при х→х0

42.Формула Тейлора для функции.

Если функция ƒ(х) определена в некоторой окрестности точки х0 и имеет в ней производные до (n+1)-го порядка включительно, то для любого х из этой окрестности найдется точка сє(х0;х) такая, что справедлива формула

Формула (26.3) называется формулой Тейлора для функции ƒ(х). Эту формулу можно записать в виде ƒ(х)=Рn(х)+Rn(x), где

называется многочленом Тейлора, а

называется остаточным членом формулы Тейлора, записанным в форме Лагранжа. Rn(х) есть погрешность приближенного равенства ƒ(х)≈Рn(х). Таким образом, формула Тейлора дает возможность заменить функцию у=ƒ(х) многочленом у=Рn(х) с соответствующей степенью точности, равной значению остаточного члена Rn(x).

При х0=0 получаем частный случай формулы Тейлора — формулу Маклорена:

где с находится между 0 и х (с=θx, 0<θ<1).

При n=0 формула Тейлора (26.3) имеет вид ƒ(х)=ƒ(х0)+ƒ'(с)(х-х0) или ƒ(х)-ƒ(х0)=ƒ'(с)(х-x0), т. е. совпадает с формулой Лагранжа конечных приращений. Рассмотренная ранее формула для приближенных вычислений ƒ(х)≈ƒ(х0)+ƒ'(х0)(х-х0) (см. «дифференциал функции») является частным случаем более точной формулы

43.Комплексные числа.

Алгебраическая форма комплексного числа.

Комплексным числом называется выражение вида a + ib, где a и b – любые действительные числа, i – специальное число, которое называется мнимой единицей. Для таких выражений понятия равенства и операции сложения и умножения вводятся следующим образом:

1.Два комплексных числа a + ib и c + id называются равными тогда и только тогда, когда

a = c и b = d.

2.Суммой двух комплексных чисел a + ib и c + id называется комплексное число

a + c + i(b + d).

3.Произведением двух комплексных чисел a + ib и c + id называется комплексное число

ac – bd + i(ad + bc).

Комплексные числа часто обозначают одной буквой, например, z = a + ib. Действительное число a называется действительной частью комплексного числа z, действительная часть обозначается a = Re z. Действительное число b называется мнимой частью комплексного числа z, мнимая часть обозначается b = Im z. Такие названия выбраны в связи со следующими особыми свойствами комплексных чисел.

Заметим, что арифметические операции над комплексными числами вида z = a + i•0 осуществляются точно так же, как и над действительными числами. Действительно,

Следовательно, комплексные числа вида a + i • 0 естественно отождествляются с действительными числами. Из-за этого комплексные числа такого вида и называют просто действительными. Итак, множество действительных чисел содержится в множестве комплексных чисел. Множество комплексных чисел обозначается . Мы установили, что , а именно

В отличие от действительных чисел, числа вида 0 + ib называются чисто мнимыми. Часто просто пишут bi, например, 0 + i3 = 3i. Чисто мнимое число i1 = 1i = i обладает удивительным свойством:

Таким образом,

С учётом этого замечательного соотношения легко получаются формулы сложения и умножения для комплексных чисел. Нет нужды запоминать сложную формулу для произведения комплексных чисел – если на комплексные числа смотреть как на многочлены с учётом равенства то и перемножать эти числа можно как многочлены. В самом деле,

то есть как раз получается нужная формула.

Запись комплексного числа z в виде x + yi называется алгебраической формой комплексного числа