Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
биология9.doc
Скачиваний:
371
Добавлен:
03.11.2018
Размер:
3.15 Mб
Скачать

§ 15 Образование половых клеток. Мейоз

Половые клетки (гаметы) развиваются в половых (генеративных) орга­нах и играют важнейшую роль: обеспечивают передачу наследственной ин­формации от родителей к потомкам. При половом размножении в результате оплодотворения происходит слияние двух половых клеток (мужской и жен­ской) и образование одной клетки — зиготы, последующее деление которой приводит к развитию дочернего организма.

Обычно в ядре клетки содержатся два набора хромосом — по одному от од­ного и другого родителя — 2п (латинской буквой «п» обозначают одинарный на­бор хромосом). Такая клетка называется диплоидной (от греч. diploos «двой­ной» и eidos «вид»). Можно предположить, что при слиянии двух ядер во вновь образовавшейся клетке (зиготе) будут находиться уже не два, а четыре набора хро­мосом, которые при каждом последующем появлении зигот будут снова удваивать­ся. Представьте себе, какое количество хромосом накопилось бы тогда в одной клетке! Но такого в живой природе не происходит: число хромосом у каждого ви­да при половом размножении остается постоянным. Связано это с тем, что поло­вые клетки образуются путем особого деления. Благодаря этому в ядро каждой половой клетки попадают не две (2п), а только одна пара хромосом (In), т. е. по­ловина из того, что было в клетке до ее деления. Клетки с одинарным набором хромосом, т. е. содержащие только половину каждой пары хромосом, называют­ся гаплоидными (от греч. haploos «простой», «одиночный» и eidos «вид»).

Процесс деления половых клеток, в результате которого в ядре оказыва­ется вдвое меньше хромосом, называют мейозом (греч. meiosis — «уменьше­ние»). Уменьшение вдвое числа хромосом в ядре (так называемая редукция) происходит при формировании и мужских, и женских половых клеток. При оплодотворении путем слияния половых клеток в ядре зиготы вновь создается двойной набор хромосом (2п).

Следует заметить, что у многих эукариот (микроорганизмы, низшие растения и самцы некоторых видов членистоногих) соматические (греч. soma — «тело») клетки (все клетки тела, исключая половые) имеют гаплоидный набор хромосом. У многих цветко­вых растений клетки являются полиплоидными, т. е. в них содержится много наборов хромосом. Но у большинства животных, у человека и у высших растений гаплоидными являются только половые клетки. Во всех других клетках тела этих организмов в ядре содержится диплоидный (2п) — двойной набор хромосом.

Мейоз имеет большое значение в живом мире. В процессе мейоза (в от­личие от митоза) образуются дочерние клетки, которые содержат в два раза меньше хромосом, чем родительские клетки, но благодаря взаимодействию хромосом отца и матери всегда обладают новыми, неповторимыми комбинаци­ями хромосом. Эти комбинации у потомства выражаются в новых сочетаниях признаков. Появляющееся множество комбинаций хромосом увеличивает воз­можность вида вырабатывать приспособления к изменяющимся условиям ок­ружающей среды, что очень важно для эволюции.

С помощью мейоза образуются половые клетки с меньшим набором хромосом и с качественно иными генетическими свойствами, чем у ро­дительских клеток.

Мейоз, или редукционное деление, — это сочетание двух своеобразных этапов деления клетки, без перерыва следующих друг за другом. Их называют мейозом I (первое деление) и мейозом II (второе деление). Каждый этап имеет несколько фаз. Названия фаз такие же, как фаз митоза. Перед делениями на­блюдаются интерфазы. Но удвоение ДНК в митозе происходит только перед первым делением. Ход мейоза показан на рисунке 23.

В первой интерфазе (предшествующей первому делению мейоза) наблю­дается увеличение размеров клетки, удвоение органоидов и удвоение ДНК в хромосомах.

Первое деление (мейоз I) начинается профазой /, во время которой уд­военные хромосомы (имеющие по две хроматиды) хорошо видны в свето­вой микроскоп. В этой фазе одинаковые (гомологичные) хромосомы, но про­исходящие из ядер отцовской и материнской гамет, сближаются между со­бой и «слипаются» по всей длине в пары. Центромеры (перетяжки) гомологич­ных хромосом располагаются рядом и ведут себя как единое целое, скрепляя четыре хроматиды. Такие соединенные между собой гомологичные удвоенные хромосомы называют парой или бивалентом (от лат. bi «двойной» и valens «сильный»).

Гомологичные хромосомы, составляющие бивалент, тесно соединяются между собой в некоторых точках. При этом может происходить обмен участка­ми нитей ДНК, в результате которого образуются новые комбинации генов в хромосомах. Этот процесс называют кроссингдвером (англ. cmssingover «пере­крест»), Кроссинговер может приводить к перекомбинации больших или ма­леньких участков гомологичных хромосом с несколькими генами или частей одного гена в молекулах ДНК (рис. 24).

Благодаря кроссинговеру в половых клетках оказываются хромосомы с иными наследственными свойствами в сравнении с хромосомами роди­тельских гамет.

Явление кроссинговера имеет фундаментальное биологическое значе­ние, так как увеличивает генетическое разнообразие в потомстве.

Сложностью процессов, происходящих в профазе I (в хромосомах, яд­ре), обусловливается наибольшая продолжительность этого этапа мейоза.

В метафазе I биваленты располагаются в экваториальной части клетки. Затем, в анафазе I, происходит расхождение гомологичных хромосом к противо­положным полюсам клетки. Телофазой /завершается первое деление мейоза, в ре­зультате которого образуются две дочерние клетки, хотя каждая хромосома в них еще остается удвоен­ной (т. е. состоит из двух сестринских хроматид).

Вслед за телофазой I наступает вторая ин­терфаза. Она занимает очень короткое время, так как синтеза ДНК в ней не происходит.

Второе деление (мейоз II) начинается про­фазой II. Возникшие в телофазе I две дочерние клетки начинают деление, подобное митозу: ядрыш­ки и ядерные мембраны разрушаются, появляются нити веретена, одним своим концом прикрепля­ющегося к центромере. В метафазе //хромосомы выстраиваются по экватору веретена. В анафазе II центромеры делятся, и хроматиды хромосом в обе­их дочерних клетках расходятся к их полюсам.

В результате из каждой удвоенной хромосомы получаются две отдельные хромосомы, которые отходят к противоположным полюсам клетки. На обоих полюсах из групп собравшихся здесь хромосом образуется ядро. В нем каждая пара гомологичных хромосом представлена только одной хромосомой.

В телофазеII вокруг ядра, которое теперь содержит одинарный (гаплоид­ный) набор хромосом, вновь образуется ядерная мембрана и делится клеточное содержимое. Редукционный процесс образования половых клеток завершается созданием четырех гаплоидных клеток — гамет.

В результате мейоза из одной клетки появляются четыре клетки с гаплоид­ным набором хромосом.

Процесс образования мужских половых клеток (сперматозоидов) назы­вают сперматогенезом (от греч. spermatos «семя» и genesis «возникновение», «происхождение»). Процесс развития женских половых клеток (яйцеклеток) называют овогенезом или оогенезом (от греч. ооп — «яйцо» и genesis «возникно­вение», «происхождение»),

1. Почему свойства дочерних организмов, развившихся из зиготы, не идентичны родительским?

2*. В чем заключается биологический смысл мейоза?

  1. Замените выделенные слова термином.

• Деление клеток, в результате которого в ядре оказывается вдвое меньше хромосом, приводит к образованию половых клеток.

  1. Завершите утверждение, выбрав правильный термин:

Одинаковые хромосомы от отца и матери называются:

а) гаплоидными; в) диплоидными;

б) гомологичными; г) одинарными.