Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пособие.doc
Скачиваний:
159
Добавлен:
02.04.2015
Размер:
6.8 Mб
Скачать

5.3.1. Метод выбранных точек

Из табл. 6 произвольно выбирается kточек (по числу неизвестных коэффициентов). Параметрыa1 a2  , ak зависимости (12) находятся, исходя из следующегоусловия: в выбранных точках экспериментальные рассчитанные по зависимостиf(x)значения должны совпадать.

Например, для квадратичной зависимости (полинома 2-го порядка)

(13)

с целью определения параметров a0 a1 , a2необходимо выбрать любые три точки (допустим, первые три). Затем, подставив табличные значения в (13), получить систему линейных алгебраических уравнений:

. (14)

Решение полученной системы уравнений (14) относительно a0 a1a2позволяет найти параметры аппроксимирующей зависимости. Решить систему можно точным методом (Крамера, Гаусса, обращения матриц).

Линеаризация аппроксимирующей зависимости

Допустим, известна структура функции, описывающей табличные данные, и она имеет следующий вид:

, (15)

где z, – известные константы.

Для определения коэффициентов a0a1a2необходимо выбрать три экспериментальные точки, а затем составить систему уравнений. Однако полученная система уравнений будет нелинейна относительно искомых коэффициентов и её решение сопряжено с рядом вычислительных трудностей.

Чтобы избежать возникших трудностей, необходимо привести зависимость (15) к линейному виду относительно искомых коэффициентов. Для этого нужно её прологарифмировать.

,

и обозначить

,

тогда получим

. (16)

Зависимость (16) линейна относительно А0a1a2. Её следует использовать для нахождения коэффициентов. Необходимо составить систему линейных алгебраических уравнений, решить её относительноА0a1a2, а затем рассчитать коэффициента0:

.

5.3.2. Метод средних

Параметры a1 a2  , ak аппроксимирующей зависимости (12) находятся, исходя из следующегоусловия (сумма невязок между экспериментальными и расчетными данными на всем интервале аппроксимации должна быть равна нулю, рис. 28):

, (17)

где yiэ – экспериментальные данные;

– расчетные данные;

i – порядковый номер точки;

m– число экспериментальных точек.

Рис. 28. Метод средних

(ye – экспериментальные данные, ysr – расчетные данные)

Невязкой называется разница между экспериментальным и расчетным значением. В зависимости от взаимного положения экспериментальной и расчетной кривой, одни невязки положительны, а другие отрицательны. Но в целом расчетная кривая должна пройти так, чтобы невязки в сумме давали нуль.

Для примера выберем ту же зависимость (13)

.

Необходимо найти неизвестные параметры a0 a1a2. Для этого все измерения, заданные в табл. 6, разбиваются на группы, обычно равные. Количество групп равно количеству неизвестных параметров, т. е.k.

Обозначим Mкак целую часть от деления:

.

Для данной аппроксимирующей зависимости М примерно равно m/3, таблица экспериментальных данных разбивается на три группы.

Тогда для каждой группы, исходя из условия (17), можно записать уравнения:

или

(18)

Решение полученной системы уравнений (18) относительно неизвестных параметров a0a1a2 позволяет найти параметры аппроксимирующей зависимости.

Теперь применим метод средних для нахождения параметров зависимости (15)

.

Как и в предыдущем методе, приведем зависимость (15) к линейному виду относительно неизвестных коэффициентов и получим

.

Тогда вместо зависимости (17)

в качестве условия поиска коэффициентов используем

или

. (19)

Разобьём экспериментальную табл. 6 на 3 группы, для каждой группы, исходя из условия (19), получим систему линейных уравнений:

или

(20)

Решаем систему (20) относительно А0a1a2. Затем рассчитаем коэффициента0:

.