Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тервер ННГУ ФнФ Подчищаева.docx
Скачиваний:
22
Добавлен:
27.03.2015
Размер:
512.87 Кб
Скачать

Экзаменационный билет № 3

Теорема Чебышева

  Теорема. Если Х1, Х2, …, Хn- попарно независимые случайные величины, причем дисперсии их равномерно ограничены (не превышаю постоянного числа С), то, как бы мало не было положительное числоe, вероятность неравенства

будет сколь угодно близка к единице, если число случайных величин достаточно велико.

 Т.е. можно записать:

 Часто бывает, что случайные величины имеют одно и то же математическое ожидание. В этом случае теорема Чебышева несколько упрощается:

            Дробь, входящая в записанное выше выражение есть не что иное как среднее арифметическое возможных значений случайной величины.

            Теорема утверждает, что хотя каждое отдельное значение случайной величины может достаточно сильно отличаться от своего математического ожидания, но среднее арифметическое этих значений будет неограниченно приближаться к среднему арифметическому математических ожиданий.

            Отклоняясь от математического ожидания как в положительную так и в отрицательную сторону, от своего математического ожидания, в среднем арифметическом отклонения взаимно сокращаются.

            Таким образом, величина среднего арифметического значений случайной величины уже теряет характер случайности.

Оценки подразделяются на два класса; точечные и интервальные.

Точечные оценки представляют собой определенные значения параметров генеральной совокупности, полученные по выборочным данным. Эти значения должны быть максимально близки к значениям соответствующих параметров генеральной совокупности, которые являются истинными значениями оцениваемых параметров.

При формировании интервальных оценок определяют границы интервалов, между которыми с большой вероятностью находятся истинные значения параметров.

Начнем с точечных оценок и рассмотрим оценку произвольного параметра (среднего, дисперсии или какого-то другого) генеральной совокупности, который обозначим a. Оценивая параметр a по выборке, находим такую величину aВ, которую принимаем за точечную оценку параметра a. Естественно, при этом стремимся, чтобы оценка была в определенном смысле наилучшей, поэтому к ней предъявляется ряд требований:

1. Состоятельность. Точечная оценка aВ называется состоятельной, если при неограниченном увеличении объема выборки () она стремится к истинному значению параметра a.

В математической статистике показывается, что состоятельной оценкой генерального среднего значения , является выборочное среднее арифметическое , а состоятельной оценкой генеральной дисперсии  — выборочная дисперсия . Методы вычисления этих выборочных характеристик были рассмотрены в гл. 3.

2. Несмещенность. Оценка aВ называется несмещенной, если она не содержит систематической ошибки, т. е. среднее значение оценки, определенное по многократно повторенной выборке объема n из одной и той же генеральной совокупности, стремится к истинному значению соответствующего генерального параметра a.

Выборочное среднее арифметическое  является несмещенной оценкой генерального среднего .

Несмещенной оценкой генеральной дисперсии  является исправленная выборочная дисперсия, вычисляемая по формуле:

 для несгруппированных данных,

 для сгруппированных данных,

3. Эффективность. Несмещенная оценка является эффективной, если она имеет наименьшую дисперсию по сравнению с другими несмещенными оценками того же параметра генеральной совокупности.

Это надо понимать так: полученные по выборке оценки  и S2 — случайные величины, так как случайны сами выборочные значения. Поэтому можно говорить о математическом ожидании и дисперсии оценок  и S2. Эффективность этих оценок означает, что их дисперсии D() и D(S2) меньше дисперсий любых других несмещенных оценок среднего значения и дисперсии генеральной совокупности.

Итак, наилучшими в указанном смысле оценками генерального среднего значения и генеральной дисперсии являются выборочные характеристики .