Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Fundamentals of Microelectronics

.pdf
Скачиваний:
208
Добавлен:
26.03.2015
Размер:
8.53 Mб
Скачать

BR

Wiley/Razavi/Fundamentals of Microelectronics [Razavi.cls v. 2006]

June 30, 2007 at 13:42

641 (1)

 

 

 

 

Sec. 12.7

Effect of Nonideal I/O Impedances

641

6. Calculate the closed-loop parameters.

Rules for Breaking the Feedback Network The third step is carried out by “duplicating” the feedback network at both the input and the output of the overall system. Illustrated in Fig. 12.50, the idea is to “load” both the input and the output of the forward amplifier by proper

X

A 1

Y

K

K

?

?

Return

Sense

Duplicate

Duplicate

Figure 12.50 Method of breaking the feedback loop.

copies of the feedback network. The copy tied to the output is called the “sense duplicate” and that connected to the input, the “return duplicate.” We must also decide what to do with the output port of the former and the input port of the latter, i.e., whether to short or open these ports. This is accomplished through the use of the “termination” rules depicted in Fig. 12.51. For example, for

Vin

A 0

Vout

R 0

Vout

 

 

 

I F

 

 

 

 

I in

 

K

Open

K

K

K

 

 

 

 

 

(a)

 

(b)

 

 

A I

Vin

Gm

I F

 

I out

I out

I in

 

 

 

K

K

K

K

Open

Open Open

(c)

(d)

Figure 12.51 Proper termination of duplicates in (a) voltage-voltage, (b) voltage-current, (c) currentcurrent, and (d) current-voltage feedback.

voltage-voltage feedback [Fig. 12.51(a)], the output port of the sense replica is left open while the input of the return duplicate is shorted. Similarly, for voltage-current feedback [Fig. 12.51(b)], both the output port of the sense duplicate and the input port of the return duplicate are shorted.

The formal proof of these concepts is given in [1] but it is helpful to remember these rules based on the following intuitive (but not quite rigorous) observations. In an ideal situation, a feedback network sensing an output voltage is driven by a zero impedance, namely, the output impedance of the forward amplifier. Thus, the input port of the return duplicate is shorted. Moreover, a feedback network returning a voltage to the input ideally sees an infinite impedance, namely, the input impedance of the forward amplifier. Thus, the output port of the sense duplicate is left open. Similar observations apply to the other three cases.

Calculation of Feedback Factor The fifth step entails the calculation of the feedback factor, a task requiring the rules illustrated in Fig. 12.52. Depending on the type of feedback, the output port of the feedback network is shorted or opened, and the ratio of the output current or

BR

Wiley/Razavi/Fundamentals of Microelectronics [Razavi.cls v. 2006]

June 30, 2007 at 13:42

642 (1)

 

 

 

 

642

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chap. 12

 

Feedback

 

 

 

 

K

 

 

 

 

 

 

V1

 

 

 

 

 

 

K

 

 

 

V1

 

 

 

 

 

 

 

K

 

 

 

 

 

 

 

I 1

 

 

 

 

K

 

 

 

 

 

 

 

I 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V2

 

 

 

 

 

 

I 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I 2

 

 

 

 

 

 

 

 

V2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K =

V2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K =

I 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K =

I 2

 

 

 

 

 

 

 

 

 

 

K =

V2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I 1

 

 

 

 

 

 

 

 

 

I 1

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)

 

 

 

 

 

 

 

 

 

 

 

(b)

 

 

 

 

 

 

 

 

(c)

 

 

 

 

 

 

 

 

 

 

(d)

Figure 12.52

 

 

Calculation of

feedback factor

for (a) voltage-voltage,

(b) voltage-current,

 

(c) current-

current, and (d) current-voltage feedback.

voltage to the input is defined as the feedback factor. For example, in a voltage-voltage feedback topology, the output port of the feedback network is open [Fig. 12.52(a)] and K = V2=V1.

The proof of these rules is provided in [1], but an intuitive view can also be developed. First, the stimulus (voltage or current) applied to the input of the feedback network is of the same type as the quantity sensed at the output of the forward amplifier. Second, the output port of the feedback network is opened (shorted) if the returned quantity is a voltage (current)—just as in the case of the sense duplicates in Fig. 12.51. Of course, if the output port of the feedback network is left open, the quantity of interest is a voltage, V2. Similarly, if the port is shorted, the quantity of interest is a current, I2.

In order to reinforce the above principles, we reconsider the examples studied thus far in this chapter and determine the closed-loop parameters if I/O impedance effects are not negligible.

Example 12.26

Analyze the amplifier depicted in Fig. 12.53(a) if R1 + R2 is not much less than RD.

 

VDD

VDD

 

 

 

R D

 

R D

 

 

Vout

 

Vout

 

 

 

 

 

 

 

 

M 1

R1

R1

 

R1

 

M 1

Short

 

 

Vin

 

Open

 

R2

R

2

R2

 

 

 

Vin

 

 

 

V2

R1

V1

 

R2

Return

 

Sense

Duplicate

 

Duplicate

(a)

(b)

(c)

Figure 12.53

Solution

We identify the forward system as M1 and RD, and the feedback network as R1 and R2. We construct the open-loop circuit according to Fig. 12.51(a), as shown in Fig. 12.53(b). Note that the feedback network appears twice. The sense duplicate output port is left open and the input port of the return duplicate is shorted. The open-loop parameters of this topology were computed in Example 12.25.

To determine the feedback factor, we follow the rule in Fig. 12.52(a) to form the circuit shown

BR

Wiley/Razavi/Fundamentals of Microelectronics [Razavi.cls v. 2006]

June 30, 2007 at 13:42

643 (1)

 

 

 

 

Sec. 12.7 Effect of Nonideal I/O Impedances

 

 

 

 

 

 

 

643

in Fig. 12.53(c), arriving at

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K =

 

V2

 

 

 

 

 

 

 

(12.116)

 

 

 

 

 

 

 

 

 

 

 

V1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

R2

 

:

 

 

 

(12.117)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1 + R2

 

 

 

 

It follows that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

KA0 =

 

 

 

R2

 

gm1[RDjj(R1 + R2)];

(12.118)

 

R1 + R2

and hence

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Av;closed =

 

 

 

 

gm1[RDjj(R1 + R2)]

 

(12.119)

 

 

 

1 +

 

 

 

R2

 

 

gm1

[RD

jj

(R1

+ R2)]

 

 

 

 

 

R

 

+ R

 

 

 

 

 

 

 

 

 

1

 

 

2

 

 

 

 

 

 

 

 

 

R

 

=

1

 

 

1 +

 

 

 

R2

 

g

 

 

1[R jj(R1 + R2)]

(12.120)

 

 

 

 

 

 

 

 

 

 

 

 

in;closed

 

gm1

 

 

 

R1 + R2

m

D

 

Rout;closed =

 

 

 

 

 

RDjj(R1 + R2)

 

:

(12.121)

 

 

 

1 +

 

 

 

R2

 

 

gm1

[RD

jj

(R1

+ R2)]

 

 

 

 

 

R

 

+ R

 

 

 

 

 

 

 

 

 

1

 

 

2

 

 

 

 

 

 

 

 

 

Obtained through our general methodology, these results agree with those found by inspection in Example 12.25.

Exercise

Repeat the above analysis if RD is replaced with an ideal current source.

Example 12.27

Analyze the circuit of Fig. 12.54(a) if R1 + R2 is not much greater than rOP jjrON .

 

VDD

 

VDD

M 3

M 4

M 3

M 4

 

Vout

 

Vout

Vin

 

R1

Vin

 

 

R

1

 

R

1

M 1

M 2

M 1

M 2

 

 

 

 

Short

Open

 

 

 

 

R2

 

 

 

R2

R2

 

 

 

 

 

 

 

 

I SS

 

 

I SS

 

 

 

 

 

(a)

(b)

Figure 12.54

Solution

Here, M1-M4 constitute the forward amplifier, and R1 and R2 the feedback network. The loop

BR

Wiley/Razavi/Fundamentals of Microelectronics [Razavi.cls v. 2006]

June 30, 2007 at 13:42

644 (1)

 

 

 

 

644

Chap. 12

Feedback

is broken in a manner similar to that in Example 12.26 because the type of feedback is the same [Fig. 12.54(b)]. The open-loop parameters are therefore given by

A0

= gmN [rON jjrOP jj(R1 + R2)]

(12.122)

Rin;open

= 1

(12.123)

Rout;open

= rON jjrOP jj(R1 + R2):

(12.124)

The test circuit for calculation of the feedback factor is identical to that in Fig. 12.53(c), yielding

 

 

 

 

 

R2

 

 

 

 

 

 

(12.125)

 

 

K =

 

;

 

 

 

 

 

 

 

 

R1 + R2

 

 

 

 

 

 

It follows that

 

 

 

 

 

 

 

 

 

 

 

 

 

Vout jclosed =

 

gmN [rON jjrOP jj(R1 + R2)]

 

 

(12.126)

Vin

1 +

 

R2

gmN [rON

jj

rOP

jj

(R + R )]

 

 

R + R

 

 

 

 

 

 

 

 

 

 

 

1

2

 

 

 

 

1

2

 

 

 

 

 

 

 

 

 

Rin;closed = 1

 

 

 

 

 

 

 

 

 

 

 

(12.127)

Rout;closed =

 

 

rON jjrOP jj(R1 + R2)

 

:

(12.128)

 

1 +

 

R2

gmN [rON

jj

rOP

jj

(R + R )]

 

 

R + R

 

 

 

 

 

 

 

 

 

 

 

1

2

 

 

 

 

1

2

 

 

 

 

 

 

 

 

 

Exercise

Repeat the above example if a load resistor of RL is tied between the output of the circuit and ground.

Example 12.28

 

 

 

 

 

 

Analyze the circuit of Fig. 12.55(a).

 

 

 

 

 

 

 

VDD

 

 

 

VDD

 

 

 

RD2

 

 

RD2

 

 

 

RD1

Vout

 

RD1

 

 

Vout

 

 

X

 

 

 

 

M 2

 

M 2

 

R1

Vin

M 1

R1

Vin

M 1

 

 

 

Open

R2

 

 

 

 

R

 

 

 

R2

 

1

 

 

 

 

 

 

 

 

 

 

Short

 

 

 

 

 

 

 

 

 

 

 

 

 

R2

 

 

(a)

(b)

Figure 12.55

Solution

We identify the forward system as M1, RD1, M2, and RD2. The feedback network consists of R1

BR

Wiley/Razavi/Fundamentals of Microelectronics [Razavi.cls v. 2006]

June 30, 2007 at 13:42

645 (1)

 

 

 

 

Sec. 12.7

Effect of Nonideal I/O Impedances

645

and R2 and returns a voltage to the source of the subtracting transistor, M1. In a manner similar to the above two examples, the open-loop circuit is constructed as shown in Fig. 12.55(b). Note that M1 is now degenerated by R1jjR2. Writing A0 = (VX =Vin)(Vout=VX ), we have

A0 =

 

 

,

RD1

f,gm2[RD2jj(R1 + R2)]g

1

 

 

+ R1jjR2

 

 

 

 

 

 

 

gm

 

Rin;open =

1

 

 

 

Rout;open =

RD2jj(R1 + R2):

As in the above example, the feedback factor is equal to R2=(R1 + R2), yielding

Vout

 

 

 

A0

 

 

 

Vin jclosed

=

 

 

 

 

 

 

1 +

 

R2

 

A0

 

 

R1 + R2

 

Rin;closed

= 1

 

 

 

 

 

R

= RD2jj(R1 + R2);

out;closed

 

 

 

R2

 

 

 

 

 

1 +

 

A0

 

 

 

 

 

 

R1 + R2

 

where A0 is given by (12.129).

(12.129)

(12.130)

(12.131)

(12.132)

(12.133)

(12.134)

Exercise

Repeat the above example if M2 is degenerated by a resistor of value RS.

Example 12.29

Analyze the circuit of Fig. 12.56(a), assuming that RF is not very large.

 

 

VDD

 

VDD

 

 

RD1

 

RD2

RD1

RD2

 

 

 

Vout

Vout

 

 

X

 

 

 

 

 

M 2

 

M 2

 

 

M 1

Vb

i RF

M 1

Vb

 

 

 

 

 

I 2

R F

 

 

 

 

 

V1

I in

R F

 

R F

R F

 

 

 

I in

 

 

 

 

(a)

 

(b)

(c)

 

Figure 12.56

 

 

 

 

 

 

Solution

As a voltage-current feedback topology, this circuit must be handled according to the rules in Figs. 12.51(b) and 12.52(b). The forward amplifier is formed by M1, RD1, M2, and RD2. The feedback network simply consists of RF . The loop is opened as shown in Fig. 12.56(b), where,

BR

Wiley/Razavi/Fundamentals of Microelectronics [Razavi.cls v. 2006]

June 30, 2007 at 13:42

646 (1)

 

 

 

 

646

Chap. 12

Feedback

from Fig. 12.51(b), the output port of the sense duplicate is shorted. Since Iin splits between RF and M1, we have

 

VX = Iin

 

 

RF

:

(12.135)

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RF +

 

 

 

 

 

 

 

 

 

 

gm1

 

 

Noting that R0 = Vout=Iin = (VX =Iin)(Vout=VX ), we write

 

R0 =

RF

[,gm2(RD2jjRF )]:

(12.136)

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RF +

 

 

 

 

 

 

 

 

 

 

 

gm1

 

 

 

 

 

 

 

 

The open-loop input and output impedances are respectively given by

 

 

R

=

1

jjR

 

(12.137)

 

 

 

 

in;open

 

 

 

 

F

 

 

 

 

 

 

 

 

gm1

 

 

 

Rout;open = RD2jjRF :

(12.138)

To obtain the feedback factor, we follow the rule in Fig. 12.52(b) and construct the test circuit shown in Fig. 12.56(c), obtaining

K =

I2

 

 

(12.139)

V1

 

 

 

 

 

 

= ,

 

1

:

(12.140)

 

 

 

 

RF

 

Note that both R0 and K are negative here, yielding a positive loop gain and hence confirming that the feedback is negative. The closed-loop parameters are thus expressed as

Vout

 

 

 

R

 

 

 

 

 

jclosed =

 

 

 

0

 

 

 

 

Iin

1 ,

 

R0

 

 

 

 

 

RF

 

 

 

 

 

1

jjRF

 

 

 

=

 

 

 

R

 

gm1

 

 

 

 

 

 

 

 

 

 

in;closed

 

 

 

 

R0

 

 

 

 

 

1 , RF

 

Rout;closed =

RD2

jj

RF

;

 

 

 

 

 

 

 

 

 

 

 

 

R0

 

 

 

 

 

1 , RF

 

where R0 is given by Eq. (12.136).

(12.141)

(12.142)

(12.143)

Exercise

Repeat the above example if RD2 is replaced with an ideal current source.

Example 12.30

Analyze the circuit of Fig. 12.57(a), assuming RM is not small, rO1 < 1, and the electronic device has an impedance of RL.

BR

Wiley/Razavi/Fundamentals of Microelectronics [Razavi.cls v. 2006]

June 30, 2007 at 13:42

647 (1)

 

 

 

 

 

Sec. 12.7 Effect of Nonideal I/O Impedances

 

 

 

 

 

647

 

 

 

VDD

 

 

 

 

 

VDD

 

 

M 5

M 6

M 1

M 5

 

 

M 6

 

M 1

 

 

I out

 

 

 

 

 

 

X

 

X

 

 

I

out

r

O1

 

 

 

 

 

 

 

 

 

 

Laser

 

 

 

 

 

RL

 

Vin

M 3

M 4

 

Vin

M 3

M 4

RM

RM

 

 

 

 

RM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I SS

 

 

I SS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)

 

 

 

 

(b)

 

 

 

M 5 M 6

X

VDD

M 1

i X

r O1

VX

Vin

M 3

M 4

RM

 

 

 

RM

 

 

I SS

 

(c)

Figure 12.57

Solution

This circuit employs current-voltage feedback and must be opened according to the rules shown in Figs. 12.51(d) and 12.52(d). The forward amplifier is formed by M1 and M3-M6, and the feedback network consists of RM . Depicted in Fig. 12.52(d), the open-loop circuit contains two instances of the feedback network, with the output port of the sense duplicate and the input port of the return duplicate left open. The open-loop gain Gm = Iout=Vin = (VX =Vin)(Iout=VX ), and

VX = ,g

m

3(r

O

3jjr 5):

(12.144)

Vin

 

O

 

 

 

 

 

 

To calculate Iout=VX , we note that the current produced by M1 is divided between rO1 and

RL + RM :

rO1

(12.145)

Iout = ,rO1 + RL + RM gm1VX ;

where the negative sign arises because Iout flows out of the transistor. The open-loop gain is therefore equal to

Gm = gm3(rO3jjrO5)gm1rO1 :

(12.146)

rO1 + RL + RM

 

The output impedance is measured by replacing RL with a test voltage source and measuring the small-signal current [Fig. 12.57(c)]. The top and bottom terminals of VX respectively see an

BR

Wiley/Razavi/Fundamentals of Microelectronics [Razavi.cls v. 2006]

June 30, 2007 at 13:42

648 (1)

 

 

 

 

648

 

Chap. 12 Feedback

impedance of rO1 and RM to ac ground; thus,

 

 

Rin;open =

VX

(12.147)

 

IX

 

= rO1 + RM :

(12.148)

The feedback factor is computed according to the rule in Fig. 12.52(d):

 

 

K = V2

 

(12.149)

 

 

I1

 

 

 

 

= RM :

(12.150)

Forming KGm, we express the closed-loop parameters as

 

Iout jclosed =

 

Gm

;

(12.151)

 

 

Vin

 

1 + RM Gm

 

Rin;closed =

1

 

(12.152)

Rout;closed =

(rO1 + RM )(1 + RM Gm);

(12.153)

where Gm is given by Eq. (12.146).

Exercise

Construct the Norton equivalent of the entire circuit that drives the laser.

Example 12.31

Analyze the circuit of Fig. 12.58(a), assuming RM is not small, and the laser diode exhibits an impedance of RL.

 

VDD

 

 

 

VDD

 

 

 

VDD

R D

M 2

R D

 

 

M 2

R D

 

 

M 2

 

I out

 

 

I

out

 

 

i

X

 

X

 

 

 

 

 

 

M 1

Laser

 

 

X

RL

 

X

 

VX

 

 

 

 

 

Vin

V

M

1

 

 

M

1

 

 

 

F

 

RM

RM

 

RM

RM

 

RM

Vin

 

Vin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)

 

 

(b)

 

 

(c)

 

Figure 12.58

Solution

The forward amplifier consisting of M1, RD, and M2 senses a voltage and delivers a current to the load, and resistor RM plays the role of the feedback network. In a manner similar to Example 12.30, we open the loop as shown in Fig. 12.58(b), where Gm = Iout=Vin =

BR

Wiley/Razavi/Fundamentals of Microelectronics [Razavi.cls v. 2006]

June 30, 2007 at 13:42

649 (1)

 

 

 

 

Sec. 12.7

Effect of Nonideal I/O Impedances

649

(VX =Vin)(Iout=VX ). As a common-gate stage, M1 and RD yield VX =Vin = gm1RD. To determine Iout, we first view M2 as a source follower and calculate the voltage gain VA=VX from

Chapter 7:

VA =

RL + RM

:

(12.154)

 

1

 

 

VX

 

 

 

 

 

 

RL + RM + gm2

 

 

 

Thus,

 

 

 

 

 

 

 

 

 

Iout =

VA

 

 

 

(12.155)

RL + RM

 

 

=

VX

 

;

(12.156)

1

 

 

 

 

RL + RM +

 

 

 

 

 

 

 

gm2

 

 

 

yielding the open-loop gain as

 

 

 

 

 

 

 

 

 

Gm =

gm1RD

:

(12.157)

1

 

 

 

 

 

 

 

 

 

RL + RM +

 

 

 

 

 

 

gm2

 

 

 

The open-loop input impedance is equal to 1=gm1. For the open-loop output impedance, we replace RL with a test voltage source [Fig. 12.58(c)], obtaining

VX =

1

+ RM :

(12.158)

 

IX

gm2

 

The feedback factor remains identical to that in Example 12.30, leading to the following

expressions for the closed-loop parameters:

 

 

 

 

 

 

Iout jclosed

=

 

 

 

Gm

 

 

 

 

 

(12.159)

1 + RM Gm

 

 

 

Vin

 

 

 

 

 

Rin;closed

=

1

 

(1 + RM Gm)

 

 

(12.160)

 

 

 

 

 

 

 

 

gm1

 

 

 

 

 

 

R

 

=

 

1

+ R

 

 

(1 + R

G

);

(12.161)

out;closed

 

 

M

 

 

 

gm2

 

M

m

 

 

 

 

 

 

 

 

 

 

 

where Gm is given by Eq. (12.157).

Exercise

Repeat the above example if a resistor of value of R1 is tied between the source of M2 and ground.

Example 12.32

Analyze the circuit of Fig. 12.59(a), assuming RF is not large, RM is not small, and the laser diode is modeled by a resistance RL. Also, assume rO2 < 1.

BR

Wiley/Razavi/Fundamentals of Microelectronics [Razavi.cls v. 2006]

June 30, 2007 at 13:42

650 (1)

 

 

 

 

650

 

 

 

 

 

 

Chap. 12

Feedback

 

 

VDD

 

 

 

 

 

VDD

 

 

 

R D

M 2

R D

 

 

 

 

M 2

 

 

 

 

X

I out

X

 

 

I

out

r

O2

 

 

 

 

 

 

 

 

 

 

 

 

 

M 1

Vb Laser

M 1

Vb

 

 

 

RL

 

I 2

 

 

 

 

 

 

 

 

 

 

I F

P

RF

 

RF

 

R

 

 

RF

RM

I 1

R

 

M

 

 

RF

M

 

 

 

 

 

 

I in

RM

I in

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)

 

 

(b)

 

 

 

 

 

(c)

 

Figure 12.59

Solution

As a current-current feedback topology, the amplifier must be analyzed according to the rules illustrated in Figs. 12.51(c) and 12.52(c). The forward system consists of M1, RD, and M2, and the feedback network includes RM and RF . The loop is opened as depicted in Fig. 12.59(b), where the output port of the sense duplicate is shorted because the feedback network returns a current to the input. Given by (VX =Iin)(Iout=VX ), the open-loop gain is computed as

A

=

(RF + RM )RD

 

,gm2rO2

;

(12.162)

 

 

I;open

 

 

1

 

 

rO2 + RL + RM jjRF

 

 

 

 

RF + RM +

 

 

 

 

 

 

gm1

 

 

where the two fractions account for the division of Iin between RF + RM and M1, and the division of ID2 between rO2 and RL + RM jjRF .

The open-loop I/O impedances are expressed as

 

 

 

 

R

 

=

1

jj(R

+ R

 

)

(12.163)

in;open

 

M

 

 

 

F

 

 

 

 

 

 

gm1

 

 

 

 

Rout;open = rO2 + RF jjRM ;

 

(12.164)

with the latter obtained in a manner similar to that depicted in Fig. 12.57(c).

To determine the feedback factor, we apply the rule of Fig. 12.52(c) as shown in Fig. 12.59(c), thereby obtaining

K =

I2

 

 

(12.165)

 

I1

 

 

 

= ,

 

RM

:

(12.166)

 

 

 

 

RM + RF

 

The closed-loop parameters are thus given by

AI;closed =

 

 

 

AI;open

 

(12.167)

1 ,

 

RM

 

 

 

AI;open

 

RM + RF

 

 

1

jj(RF + RM )

 

 

 

 

 

gm1

Rin;closed =

 

 

 

RM

 

(12.168)

 

1 ,

 

AI;open

 

RM + RF

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]