Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Хімія 11-Б клас.docx
Скачиваний:
3
Добавлен:
22.11.2019
Размер:
105.47 Кб
Скачать

Форма і розміри

Розмір атома є величиною, що важко піддається вимірюванню, адже центральне ядро оточує розмита електронна хмара. Для атомів, що утворюють тверді кристали, відстань між суміжними вузлами кристалічної ґратки може слугувати наближеним значенням їхнього розміру. Для атомів, що кристалів не формують, використовують інші техніки оцінки, включаючи теоретичні розрахунки. Наприклад, розмір атома Гідрогену оцінюють як 1,2×10−10 м. Це значення можна порівняти з розміром протона (що є ядром атому водню): 0,87×10−15 м і переконатися в тому, що ядро атома водню в 100 000 разів менше, ніж сам атом. Атоми інших елементів зберігають приблизно те саме співвідношення. Причиною цього є те, що елементи із більшим позитивно-зарядженим ядром притягують електрони сильніше.

Ще одною характеристикою розмірів атома є радіус ван дер Ваальса — віддаль, на яку до даного атома може наблизитися інший атом. Міжатомні віддалі в молекулах характеризуються довжиною хімічних зв'язків або ковалентним радіусом.

Енергетичні рівні

Значення енергії, які може мати атом, обчислюються й інтерпретуються, виходячи з положень квантової механіки. При цьому враховуються такі фактори, як електростатична взаємодія електронів з ядром та електронів між собою, спіни електронів, принцип нерозрізнюваності часток. У квантовій механіці стан, в якому перебуває атом описується хвильовою функцією, яку можна знайти з розв'язку рівняння Шредінгера. Існує певний набір станів, кожен із яких має певне значення енергії. Стан із найменшою енергією називається основним станом. Інші стани називаються збудженими. Атом перебуває в збудженому стані скінченний час, випромінюючи рано чи пізно квант електромагнітного поля (фотон) і переходячи в основний стан. В основному стані атом може перебувати довго. Щоб збудитися, йому потрібна зовнішня енергія, яка може надійти до нього тільки із зовнішнього середовища. Атом випромінює чи поглинає світло лише певних частот, які відповідають різниці енергій його станів.

Можливі стани атома індексуються квантовими числами, такими як спін, квантове число орбітального моменту, квантове число повного моменту. Детальніше про їхню класифікацію можна прочитати в статті електронні терми атомів.

Квантові переходи в атомі

Між різними станами атомів можливі переходи, викликані зовнішнім збуренням, найчастіше електромагнітним полем. Внаслідок квантування станів атома оптичні спектри атомів складаються із окремих ліній, якщо енергія кванта світла не перевищує енергію іонізації. При вищих частотах оптичні спектри атомів стають неперервними. Ймовірність збудження атома світлом падає із подальшим ростом частоти, але різко зростає при певних характерних для кожного хімічного елемента частотах в рентгенівському діапазоні.

Збуджені атоми випромінюють кванти світла з тими ж частотами, на яких відбувається поглинання.

Переходи між різними станами атомів можуть викликатися також взаємодією із швидкими зарядженими частками.

Хімічні властивості

Хімічні властивості атома визначаються в основному валентними електронами — електронами на зовнішній оболонці. Кількість електронів на зовнішній оболонці визначає валентність атома.

Атоми останнього стовпчика періодичної таблиці елементів мають повністю заповнену зовнішню оболонку, а для переходу електрона на наступну оболонку потрібно надати атому дуже велику енергію. Тому ці атоми інертні, не схильні вступати в хімічні реакції. Інертні гази зріджуються й кристалізуються тільки при дуже низьких температурах.

Атоми першого стовпчика періодичної таблиці елементів мають на зовнішній оболонці один електрон, і є хімічно активними. Їхня валентність дорівнює 1. Характерним типом хімічного зв'язку для цих атомів у кристалізованому стані є металічний зв'язок.

Атоми другого стовпчика періодичної таблиці в основному стані мають на зовнішній оболонці 2 s-електрони. Їхня зовнішня оболонка заповнена, тому вони мали б бути інертними. Але для переходу із основного стану із конфігурацією електронної оболонки s2 у стан із конфігурацією s1p1 потрібно дуже мало енергії, тож ці атоми мають валентність 2, проте вони проявляють меншу активність.

Атоми третього стовпчика періодичної таблиці елементів (у короткій формі) мають у основному стані електронну конфігурацію s2p1. Вони можуть проявляти різну валентність: 1, 3, 5. Остання можливість виникає тоді, коли електронна оболонка атома доповнюється до 8 електронів і стає замкнутою.

Атоми четвертого стовпчика короткої форми періодичної таблиці елементів здебільшого мають валентність 4 (наприклад, вуглекислий газ CO2), хоча можлива й валентність 2 (наприклад, чадний газ CO). До цього стовпчика належить вуглець — елемент, який утворює найрізноманітніші хімічні сполуки. Сполукам вуглецю присвячений особливий розділ хімії — органічна хімія. Інші елементи цього стовпчика — кремній, германій при звичайних умовах є твердо тільними напівпровідниками.

Елементи п'ятого стовпчика мають валентність 3 або 5.

Приклад гібридизації орбіталей — sp3 гібридизація

Елементи шостого стовпчика короткої форми періодичної таблиці в основному стані мають конфігурацію s2p4 і загальний спін 1. Тому вони двовалентні. Існує також можливість переходу атома в збуджений стан s2p3s' зі спіном 2, в якому валентність дорівнює 4 або 6.

Елементам сьомого стовпчика короткої форми періодичної таблиці не вистачає одного електрона на зовнішній оболонці для того, щоб її заповнити. Вони здебільшого одновалентні. Проте можуть вступати в хімічні сполуки в збуджених станах, проявляючи валентності 3,5,7.

Для перехідних елементів характерне заповнення зовнішньої s-оболонки, перш ніж повністю заповнюється d-оболонка. Тому вони здебільшого мають валентність 1 або 2, але в деяких випадках один із d-електронів бере участь в утворенні хімічних зв'язків, і валентність стає рівною трьом.

При утворенні хімічних сполук атомні орбіталі видозмінюються, деформуються і стають молекулярними орбіталями. При цьому відбувається процес гібридизації орбіталей — утворення нових орбіталей, як специфічної суми базових.

Приклад:

12.09.2012

Електронегативність. Місце елемента в періодичній системі та окисно-відновні властивості простих речовин і простих йонів; кислотно-відновні властивості вищих оксидів, гідрооксидів та гідритів)

Електронегативність (χ) — фундаментальна хімічна властивість атома, кількісна характеристика здатності атома в молекулі притягати до себе спільні електронні пари.

Значення електронегативності

Група

I A

II A

III B

IV B

V B

VI B

VII B

VIII B

VIII B

VIII B

I B

II B

III A

IV A

V A

VI A

VII A

VIII A

Період

1

H 2,0

He 4,5

2

Li 0,98

Be 1,57

B 2,04

C 2,55

N 3,2

O 3,44

F 3,98

Ne 4,4

3

Na 0,93

Mg 1,31

Al 1,61

Si 1,6

P 2,49

S 2,58

Cl 3,0

Ar 4,3

4

K 0,82

Ca 1,00

Sc 1,36

Ti 1,54

V 1,63

Cr 1,66

Mn 1,55

Fe 1,83

Co 1,88

Ni 1,91

Cu 1,90

Zn 1,65

Ga 1,81

Ge 2,01

As 2,4

Se 2,55

Br 2,96

Kr 3,00

5

Rb 0,82

Sr 0,95

Y 1,22

Zr 1,33

Nb 1,6

Mo 2,16

Tc 1,9

Ru 2,2

Rh 2,28

Pd 2,20

Ag 1,93

Cd 1,69

In 1,78

Sn 1,96

Sb 2,21

Te 2,4

I 2,66

Xe 2,60

6

Cs 0,79

Ba 0,89

*  

Hf 1,3

Ta 1,5

W 2,36

Re 1,9

Os 2,2

Ir 2,20

Pt 2,28

Au 2,64

Hg 2,2

Tl 1,62

Pb 2,33

Bi 2,02

Po 2,3

At 2,5

Rn 2,2

7

Fr 0,8

Ra 0,9

**  

Rf  

Db  

Sg  

Bh  

Hs  

Mt  

Ds  

Rg  

Cn  

Uut  

Uuq  

Uup  

Uuh  

Uus  

Uuo  

Лантаноїди

*  

La 1,1

Ce 1,12

Pr 1,13

Nd 1,14

Pm 1,13

Sm 1,17

Eu 1,2

Gd 1,2

Tb 1,1

Dy 1,22

Ho 1,23

Er 1,24

Tm 1,25

Yb 1,1

Lu 1,27

Актиноїди

**  

Ac 1,1

Th 1,3

Pa 1,5

U 1,38

Np 1,36

Pu 1,28

Am 1,13

Cm 1,28

Bk 1,3

Cf 1,3

Es 1,3

Fm 1,3

Md 1,3

No 1,3

Lr 1,291

Періоди́чна систе́ма елеме́нтів (рос. периодическая система элементов, англ. periodic law, periodic system, periodic table; нім. Periodensystem (der Elemente), periodisches System (der Elemente)) — класифікація хімічних елементів, розроблена на основі періодичного закону.

Сучасне формулювання періодичного закону звучить так: властивості елементів перебувають у періодичній залежності від заряду їхніх атомних ядер. Заряд ядра Z дорівнює атомному (порядковому) номеру елемента в системі. Елементи, розташовані за зростанням Z (H, He, Li…) утворюють 7 періодів. Період — сукупність елементів, що починається лужним металом та закінчується благородним газом (особливий випадок — перший період, що складається з двох газоподібних елементів — Н та Не). У 2-у і 3-у періодах — по 8 елементів, у 4-у і 5-у — по 18, у 6-у 32. Вертикальні стовпці — групи елементів з подібними хімічними властивостями. Всередині груп властивості елементів також змінюються закономірно (напр., у лужних металів від Li до Fr зростає хімічна активність). Елементи Z = 58-71 та Z = 90-103, особливо схожі за властивостями, утворюють два сімейства — лантаноїдів та актиноїдів. Періодичність властивостей елементів зумовлена періодичним повторенням конфігурації зовнішніх електронних оболонок атомів.

Найпоширенішими з усіх є 3 форми таблиці Періодичної системи елементів: «коротка» (короткоперіодна), «довга» (довгоперіодна) і «наддовга». У «наддовгому» варіанті кожен період займає рівно один рядок. У «довгому» варіанті лантаноїди та актиноїди винесені із загальної таблиці, роблячи її компактнішою. У «короткій» формі запису, на додаток до цього, четвертий і наступні періоди займають по 2 рядки; символи елементів головних і побічних підгруп вирівнюються щодо різних країв клітин.

Нижче наведено довгий варіант, затверджений Міжнародним союзом теоретичної і прикладної хімії (IUPAC) як основний.