Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
элтех.docx
Скачиваний:
41
Добавлен:
20.11.2019
Размер:
459.24 Кб
Скачать

Переходные процессы в rc-цепях

Переходные процессы в цепи рис. 4.2 будут возникать при установке ключа К в положение 1 (нулевые начальные условия) или 2 (ненулевые начальные условия).

Рис. 4.2. RC-цепь а) и переходные процессы в ней б) и в).

Переходной процесс в RC-цепи при нулевых начальных условиях. Рассмотрим случай, когда на входе цепи действует постоянное напряжение, т.е. u(t) = U. В момент t = 0 замкнем ключ К в положение 1 и подключим постоянное напряжение к цепи. Под действием напряжения U в цепи будет протекать ток i, который создает на резисторе R падение напряжения и заряжает емкость C. На основании второго закона Кирхгофа можно записать

.                                  (4.16)

Решение этого уравнения будем искать в форме суммы общего и частного решений, которые определяют свободную и принужденную составляющие:

.                                                  (4.17)

Для определения свободной составляющей необходимо найти решение однородного дифференциального уравнения, которое получается из (4.16) приU = 0 и имеет вид:

.                                                  (4.18)

Общее решение уравнения (4.18) определяется выражением

,                                                          (4.19)

где А – постоянная интегрирования; p – корень характеристического уравнения, полученного из (4.18) RCp + 1 = 0, откуда p = -1/RC = -1/τ, тогда (4.19) примет вид

,                                                  (4.20)

где τ = RC - постоянная времени цепи.

В установившемся режиме (после заряда конденсатора) напряжение на конденсаторе будет равно приложенному ко входу цепи напряжению, т.е. принужденная составляющая определяется уравнением:

.                                                          (4.21)

Подставляя (4.20) и (4.21) в (4.17)будем иметь

.                                                  (4.22)

Учитывая, что в момент коммутации t = 0 и uC = 0 из (4.22) находим постоянную интегрирования А = -U, тогда (4.20)примет вид:

.                                                  (4.23)

Подставляя (4.21) и (4.23) в (4.17) получаем выражение, которое определяет как изменяется напряжение на выходе RC-цепи при подключении к ее входу источника постоянного напряжения

.                                                  (4.24)

Учитывая (4.24)находим выражение, определяющее изменение тока в цепи

.                                          (4.25)

Графики изменения напряжения (4.24) и тока (4.25), поясняющие переходной процесс в RC-цепи при заряде емкости изображены на рис. 4.2,б. Из графиков видно, что в момент подключения к RC-цепи источника постоянного напряжения ток в цепи достигает максимального значения, а напряжение на конденсаторе равно нулю , т.е. емкость ведет себя как короткозамкнутый участок цепи. С увеличением времени ток уменьшается а напряжение на емкости увеличивается по экспоненциальному закону. Приt = 0 ток становится равным нулю, а uC = U, т.е. емкость эквивалентна разрыву цепи для постоянного тока.

Рассмотрим переходной процесс в RC-цепи при нулевых начальных условиях, когда к входу цепи подключается гармоническое воздействие. В этом случае принужденная составляющая будет иметь вид:

,                          (4.26)

где

                          (4.27)

Учитывая (4.20) и (4.26) находим

.          (4.28)

Постоянную интегрирования А определим исходя из начальных условий, что при t = 0 uC = 0, тогда

.

Подставляя А в (4.28) находим выражение, определяющее изменение UC при подключении к RC-цепи гармонического воздействия

.          (4.29)

Ток в цепи определяется выражением

Из выражения (4.29) видно, что при подключении к RC-цепи с большой постоянной времени τ гармонического воздействия в момент, когда φu = π - φ в цепи могут возникнуть перенапряжения достигающие величины            UCmax ≈ 2UmC. Если к цепи подключается гармоническое воздействие, когда   φu = π/2 - φ, то в цепи нет переходного процесса и сразу наступает установившийся режим.

Переходной процесс в RC-цепи при ненулевых начальных условиях. Переведем ключ К в цепи рис. 4.2 в положение 2. При этом произойдет отключение цепи от источника входного воздействия и емкость будет подключена к резисторуR.

К моменту коммутации емкость была заряжена до напряжения U и в ней была запасена энергия WC = CU2/2. После коммутации емкость начинает разряжаться и энергия расходуется на резисторе R. Переходной процесс, т.е. процесс разряда емкости, определяется уравнением

.                                                  (4.30)

Решением уравнения (4.30) является выражение (4.20)

.                                  (4.31)

Постоянную интегрирования А находим из начальных условий, т.е. при     t = 0 uC = U, тогда из (4.31) определяем А = U. Подставляя значение А = U в (4.31) находим выражение, определяющее изменение напряжения в RC-цепи при разряде емкости через резистор

.                                                          (4.32)

Ток в цепи изменяется в соответствии с выражением

.                                          (4.33)

Знак (-) в уравнении (4.33) означает, что ток разряда имеет обратное направление току заряда емкости.

Графики изменения uC и i приведены на рис. 4.2,в.

Из графиков рис. 4.2,в и выражений (4.32) и (4.33) видно, что в начале разряда емкости (t = 0) ток в цепи и напряжение на емкости имеют максимальные значения uC = U, i = -U/R. С увеличением времени разряда напряжение на емкости и ток в цепи стремятся к нулю по экспоненциальному закону, т.е. в цепи имеет место переходной процесс. Длительность переходного процесса зависит от постоянной времени цепиτ, который заканчивается через время t ≈ 3τ. Вся энергия, запасенная в конденсаторе, за время разряда преобразуется в резисторе R в тепло.