Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
вопросы 2 семинар.docx
Скачиваний:
3
Добавлен:
19.11.2019
Размер:
31.3 Кб
Скачать

Термодинамика в природных процессах

Термодинамика сначала исследовала тепловые явления, а после установления закона сохранения и превращения энергии стала изучать также превращения энергии во всех ее формах. Термодинамика основана на трех-четырех утверждениях, которые включили в себя огромный опыт человечества по превращению энергии и называются началами термодинамики. Исторически первым установлено второе начало, потом — первое и третье, а последним — нулевое.

Нулевое начало термодинамики уточняет понятие температура. Тепловое равновесие существует, если система А приведена в тепловой контакт с системой В, но потоки энергии отсутствуют. Количественно введено понятие температуры: если системы А и В имеют одинаковую температуру, то системы находятся в тепловом равновесии друг с другом.

Первое начало термодинамики — это закон сохранения и превращения энергии в изолированной системе, утверждение существования внутренней энергии, поэтому его называют принципом энергии. Энергия утвердилась как основная сохраняющаяся величина (1847), когда договорились о терминах Кельвин и Джоуль. Теплота и работа определяют способы передачи энергии.

Второе начало термодинамики устанавливает направленность всех процессов в изолированных системах. Кельвин и Кла-узиус отделили это начало — хотя полное количество энергии сохраняется в любом процессе, распределение энергии изменяется необратимо. Второе начало называют принципом энтропии. Теплота переходит самопроизвольно только от более нагретых тел к менее нагретым. При этом для направления, в котором происхо- дит изменение распределения энергии, оказывается не важно само количество энергии. Это начало проявилось при преобразовании теплоты в полезную работу, оно сыграло важнейшую роль в преобразовании энергии, запасенной в топливе, в движущую силу. Ограничения, устанавливаемые вторым началом термодинамики, показали, что трудно выделить упорядоченное движение из неупорядоченного. В формулировке Кельвина второе начало таково: «Невозможен процесс, единственный результат которого состоял бы в поглощении теплоты от нагревателя и полного преобразования этой теплоты в работу».

Третье начало термодинамики определяет свойства веществ при очень низких температурах, утверждая, что нельзя охладить тела до температуры абсолютного нуля за конечное число процессов. Оно предполагает атомное строение вещества, тогда как остальные являются обобщением опытных данных и не содержат сведений о какой-либо структуре вещества.

Достоинство термодинамики в том, что она позволяет рассмотреть общие свойства систем при равновесии и общие закономерности установления равновесия, получить многие сведения о веществе, не зная в полной мере его внутреннюю структуру. Ее законы применимы к любому веществу, к любым системам, включающим электрические и магнитные поля и излучение, поэтому они вошли в физику газовых и конденсированных сред, химию и технику, необходимы в геофизике и физике Вселенной, используются в биологии и управлении процессами. В начале XX в. американский ученый Гиббс разработал метод термодинамических потенциалов, в котором состояние системы характеризуется той или иной функцией: внутренней энергией, энтальпией, свободной энергией или потенциалом Гиббса (см. гл. 8). Термодинамика строилась как классическая динамическая теория, так как все устанавливаемые ею связи носили однозначный характер и все описываемые ею явления объяснялись как абсолютно необходимые. Как и в механике, случайность не входит в теорию.