Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
7 семестр С и У рефераты за весь семестр.docx
Скачиваний:
29
Добавлен:
19.11.2019
Размер:
134.97 Кб
Скачать

14. Кибернетика как управляющее научное знание Виннер и Эшби.

Кибернетика— наука об общих закономерностях процессов управления и передачи информации в машинах, живых организмах и обществе.

Стаффорд Бир назвал её наукой эффективной организации, а Гордон Паск расширил определение, включив потоки информации "во все медиа", начиная со звёзд и заканчивая мозгом. Она включает изучение обратной связи, чёрных ящиков и производных концептов, таких как управление и коммуникация в живых организмах, машинах и организациях, включая самоорганизации. Она фокусирует внимание на том, как что-либо (цифровое, механическое или биологическое) обрабатывает информацию, реагирует на неё и изменяется или может быть изменено, для того чтобы лучше выполнять первые две задачи.

Сфера кибернетики

Объектом кибернетики являются все управляемые системы. Системы, не поддающиеся управлению, в принципе, не являются объектами изучения кибернетики. Кибернетика вводит такие понятия, как кибернетический подход, кибернетическая система. Кибернетические системы рассматриваются абстрактно, вне зависимости от их материальной природы. Примеры кибернетических систем - автоматические регуляторы в технике, ЭВМ, человеческий мозг, биологические популяции, человеческое общество. Каждая такая система представляет собой множество взаимосвязанных объектов (элементов системы), способных воспринимать, запоминать и перерабатывать информацию, а также обмениваться ею. Кибернетика разрабатывает общие принципы создания систем управления и систем для автоматизации умственного труда. Основные технические средства для решения задач кибернетики - ЭВМ. Поэтому возникновение кибернетики как самостоятельной науки (Н. Винер, 1948) связано с созданием в 40-х гг. 20 в. этих машин, а развитие кибернетики в теоретических и практических аспектах - с прогрессом электронной вычислительной техники.

Кибернетика является междисциплинарной наукой. Она возникла на стыке математики, логики, семиотики, физиологии, биологии, социологии. Ей присущ анализ и выявление общих принципов и подходов в процессе научного познания. Наиболее весомыми теориями, объединяемыми кибернетикой, можно назвать следующие:

Теория передачи сигналов

Теория информации

Теория систем

Теория управления

Теория автоматов

Теория принятия решений

Синергетика

Теория алгоритмов

Исследование операций

Распознавание образов

Теория оптимального управления

Именно Эшби был одним из основоположников кибернетики, ввел понятие самоорганизации. Эшби шел к кибернетике не от математики и наводки зенитных орудий или техники связи и передачи сигналов по каналам с шумами, но от наблюдений за человеческим мозгом в самых что ни на есть граничных, подпадающих под юрисдикцию психиатрии, ситуациях. А психиатрия с психологией с древнейших времен очень тесно соприкасались с философией. И, излагая кибернетику на преимущественно биологических, часто заимствованных из врачебного опыта примерах, Эшби органично пришел к идее усилителя интеллекта. Устройства, которое позволит человеку многократно умножить потенциал разума. Подобно тому, как механизмы увеличивают мощь мускулов.

В своей классической книге Cybernetics: or Control and Communication in the Animal and the Machine (“Кибернетика или контроль и коммуникации у животных и машин”) (1948) Н. Винер обозначил и описал основы кибернетики — одной из самых молодых научных дисциплин XX в. Использованное Н. Винером название науки восходит к древним грекам и означает в буквальном смысле “искусство управления”. При его выборе Н. Винер хотел подчеркнуть признание того факта, что первой посвященной действию механизма обратной связи значительной работой была статья о регуляторах Кларка Максвелла (1868) и что термин “регулятор” (governor) происходит от искаженного латинского слова gubernatur. Платон использовал этот термин для обозначения науки об управлении кораблями в то время как в XIX в. французский ученый Андре Ампер заимствовал его для определения науки об управлении. Демонстрируя факт наличия основополагающего сходства между используемыми в различных науках механизмами управления, кибернетика смогла устранить давнее философское противоречие между витализмом и механизмом, согласно которому биологические и механические системы имели принципиально различную природу. Фактически кибернетика, в соответствии с философской позицией Н. Винера, допускала гораздо более широкую классификацию систем, и таким образом проявляла свой междисциплинарный характер (Wiener, 1993: 84). Полезным критерием для проведения этой классификации является понятие комплексности, в соответствии с которым основной интерес кибернетики заключается в изучении комплексных (то есть настолько сложных, что они не могут быть описаны в подробном и детальном виде) и стохастических (в противоположность детерминированным) систем (Beer, 1959: 18). Типичными примерами таких систем являются экономика, человеческий мозг и коммерческая компания. Для изучения механизма управления и передачи информации в подобных системах Н. Винер и его коллеги разработали понятия обратной связи, гомеостазиса и “черного ящика”. Хотя механизм обратной связи был рассмотрен нами ранее, полезно проанализировать его основные характеристики более подробно. Каждый контур обратной связи подразумевает использование входящей информации (например, измерений температуры) и выхода (например, данных о работе нагревателя); кроме того — и это имеет важнейшее значение — информация на входе испытывает на себе воздействие выходе, например, мощность нагревателя будет определять показания, снимаемые с термометра, которые, в свою очередь, будут влиять на сигнал о включении или об отключении нагревателя. Таким образом, происходит непрерывный контроль за расхождением между желаемой и реальной ситуацией. Если управляющий механизм действует в направлении сокращения этого расхождения, то такая обратная связь носит название отрицательной (как в случае термостата); если же обратная связь способствует увеличению расхождения, то она называется положительной (как в случае механического тормоза, который фиксирует начальные движения руки водителя и затем усиливает их до тех пор, пока не сможет остановить движущийся автомобиль). В своей книге Cybernetics (“Кибернетика”) (1948) Н. Винер показал, что механизмы обратной связи присутствуют во многих имеющих принципиально различную природу системах — от механических до экономических и от социологических до биологических. Особый, имеющий важнейшее значение для поддержания жизни тип обратной связи присутствует в так называемом явлении гомеостаза. Классическим биологическим примером является гомеостаз температуры крови, позволяющий сохранять температуру тела практически неизменной, несмотря на перемещение организма из холодного помещения в теплое. Таким образом гомеостатом называется регулирующий прибор, для поддержания некоторых переменных в заданных пределах. Так, типичным примером гомеостата является созданный Дж. Уаттом регулятор давления пара в паровозе, предназначенный для управления его скоростью при различных значения нагрузки. Здесь крайне важно понять, что выход регулируемой переменной за желаемые пределы (когда скорость паровоза оказывается слишком быстрой или слишком медленной) сам по сам по себе выполняет роль обратной связи (когда происходит соответствующее закрытие или открытие клапанов в регуляторе Уатта). Другими словами, до тех пор, пока функционирует сам механизм, его обратная связь также будет работать исправно. Этот вывод имеет огромное значение, поскольку он подразумевает, что обратная связь регулятора всегда будет гарантированно компенсировать не только данный тип возмущений, но и возмущения любых типов (Beer, 1959: 29). Это особое свойство систем управления обычно называется ультрастабильностью (Ashby, 1956). Теперь нам должно быть ясно, что понятие “управления” в кибернетике не сводится к наивному представлении о процессе принуждения, а подразумевает осуществление саморегулирования.

При моделировании системы в виде черного ящика идентифицируются четыре набора переменных: набор возможных состояний системы (S); набор возмущений, способных повлиять на текущее ее состояние (Р); набор реакций на эти возмущения (R); набор целей, определяющих приемлемые состояния в соответствии с установленными критериями (Т). Считается, что система находится в “управляемом состоянии” если в любой момент времени ее состояние соответствует состоянию из набора Т. С помощью этой модели устанавливается чрезвычайно важный кибернетический принцип: если система находится в управляемом состоянии, то необходимо, чтобы для любого возмущения, стремящегося вывести систему из допустимых состояний, существовала такая ее реакция, которая после своего осуществления приводила бы систему в одно из состояний из совокупности Т. Данный принцип был разработан английским кибернетиком Россом Эшби и получил название “закона необходимого многообразия”, обычно формулируемого следующим образом: “только многообразие способно поглотить многообразие” (Ashby, 1956).

54