Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Техн. пр. маш. пр. Лекции.docx
Скачиваний:
69
Добавлен:
19.11.2019
Размер:
33.11 Mб
Скачать

3.4.2 Кислородно-флюсовая резка

Процесс кислородно-флюсовой резки позволяет применить газокислородную резку для высоколегированных сталей толщиной до 500 мм, серого чугуна толщиной до 300 мм, меди толщиной до 50 мм и латуни толщиной до 150 мм. В зону реза одновременно с режущим кислородом вводят порошкообразные вещества, которые способствуют расплавлению или механическому удалению образующихся тугоплавких окислов из зоны реза. Основой для большинства флюсов, применяемых при резке, является железный порошок, к которому добавляют в зависимости от разрезаемого металла порошок феррофосфора и (или) алюминия.

Для кислородно-флюсовой резки применяют специальные установки, в комплект которых кроме резаков особой конструкции входит флюсопитатель для подачи флюса в режущую струю кислорода. Наибольшее распространение в промышленности получили установки типа УРХС (установка резки хромистых сталей).

Установка УРХС-5 (рисунок 3.21) предназначена для ручной разделительной кислородно-флюсовой резки одним резаком высоколегированных хромистых и хромоникелевых сталей толщиной 10 – 200 мм. Установка работает по схеме внешней подачи флюса из флюсопитателя 1 через циклонное устройство 2 и рукав 3 к резаку 6. В составе резака имеется флюсовая приставка и тележка с циркульным устройством, применяемая при вырезке заготовок круглой формы. Подача флюса регулируется вентилем 7.

Рисунок 3.21 – Схема установки УРХС-5

Основная часть кислорода подается из кислородного баллона по шлангу 4 в резак, другая часть поступает в редуктор, после которого разветвляется на два направления: в верхнюю часть флюсопитателя для выдавливания из него флюсового порошка в циклонную камеру и в циклонную камеру, где захватывает флюс и по рукаву 3 доставляет в резак. Флюс перед засыпкой в бункер флюсопитателя просеивается через сито. Питание резака ацетиленом производится из ацетиленового баллона.

3.4.3 Плазменная резка

В последнее время начинают широко применять производительный процесс резки плазменной проникающей дугой (точнее – дугой сильно ионизированного газа), температура которой порядка 10000 – 300000С. Этот способ универсален относительно марки разрезаемого металла, им успешно режут коррозионно-стойкие стали, цветные металлы и сплавы, неметаллические материалы.

Установка для плазменной резки состоит из источника питания с аппаратурой управления процессом резки и инструмента-плазмотрона, основными элементами которого являются электрод и сопло. Плазмотроны изготавливаются для машинной и ручной резки с водяным и жидкостным охлаждением.

Рисунок 3.22 – Схема образования плазменной дуги в головке плазмотрона

С хема получения плазменной дуги в плазмотроне показана на рисунке 3.22. Дуговой разряд возникает между вольфрамовым электродом 1 и металлом заготовки 5. Дуга горит в замкнутом цилиндрическом канале 4, стенки которого энергично охлаждаются водой или сжатым воздухом. Через канал под давлением подают плазмообразующую газовую среду – воздух, аргон, азот, смесь аргона и азота с водородом, аммиак. Реже в данном качестве используется вода, которая при высокой температуре дуги превращается в пар и частично диссоциирует на кислород и водород. Вследствие сжатия газового (ионного) проводника силами магнитного поля и охлаждения наружной поверхности столба дуги стенками канала, появляется центральная тонкая плазменная струя 2 с высокой степенью ионизации, большим избыточным давлением и температурой, достигающей 10000 – 300000С.

Источники питания плазменной резки работают от сети переменного тока напряжением 380 и 220 В, преобразуют его в постоянный и подают на плазмотрон, обеспечивающий рабочее напряжение на дуге при ручной резке 120 – 150 В, при машинной – до 250 В. К плазмотрону подводят коммуникации с плазмообразующим газом (смесями газов) и охлаждающей средой.

Общий вид установки плазменной резки с программным управлением для раскроя листа толщиной до 150 мм и точностью позиционирования режущей головки (плазмотрона) 0,1 мм показан на рисунке 3.23.

Рисунок 3.23 – Установка плазменной резки с программным управлением

Размер стола 1700 х 3100 мм. Плазмотрон (на рисунке 3.23 у правой стойки) расположен на портале и может осуществлять координатное перемещение (вдоль стола за счет движения по направляющим портала, поперек стола за счет движения портала по приставным направляющим) относительно листа, размещаемого на столе.