
- •Рецензенти:
- •Передмова
- •Розділ і висловлення і операції над ними. Предикати § 1. Висловлення і операції над ними. Елементи математичної логіки
- •1. Вступ
- •2. Висловлення. Прості і складені висловлення
- •Предикати (висловлювальні форми)
- •Квантори
- •§ 2. Структура і види теорем
- •1. Структура теореми
- •2. Види теорем
- •3. Найпростіші схеми правильних міркувань
- •§ 3. Математичні поняття. Особливості математичних понять. Об'єм і зміст поняття. Означення понять. Структура означення понять через рід і видову відмінність
- •1. Поняття як форма мислення. Особливості математичних понять
- •2.Зміст і обсяг поняття, відношення між ними
- •Способи означення математичних понять
- •4. Вимоги до логічно правильних означень понять
- •5. Приклади математичних понять, які розглядаються в початковому курсі математики
- •Питання для самоконтролю
- •Система вправ
- •Розділ іі множини, операції над ними. Відношення § 4. Множини, операції над ними
- •Поняття множини і елемента множини. Порожня множина. Способи задання множин
- •Підмножина. Рівні множини. Зображення множин і зв’язків між ними за допомогою кругів Ейлера
- •Числові множини. Запис числових проміжків
- •Переріз і об’єднання множин. Закони цих операцій. Доповнення підмножини
- •Декартів добуток двох множин. Зображення декартового добутку двох числових множин на координатній площині
- •Властивості декартового добутку:
- •6. Поняття розбиття множини на підмножини, що попарно не перетинаються. Класифікація понять. Приклади класифікацій
- •§ 5. Відношення та відповідність
- •Поняття відношення. Граф відношення
- •Способи задання відношень
- •Властивості відношень
- •Відношення еквівалентності
- •Відношення порядку
- •Поняття відповідності
- •Способи задання відповідностей
- •Відповідність, обернена даній
- •Взаємно однозначні відповідності
- •Рівнопотужні множини
- •Питання для самоконтролю
- •Система вправ
- •Коротка історія розвитку поняття числа
- •Визначення натурального числа і нуля
- •Теоретико-множинний зміст кількісного натурального числа і нуля
- •Порівняння натуральних чисел
- •Властивості множини цілих невід’ємних чисел
- •Тема. Додавання цілих невід’ємних чисел
- •Теоретико-множинний смисл суми двох цілих невід’ємних чисел
- •Існування суми, її єдиність
- •Сума декількох доданків
- •Закони додавання
- •Тема. Віднімання цілих невід’ємних чисел
- •Теоретико-множинний смисл різниці двох цілих невід’ємних чисел
- •Означення різниці через суму. Зв’язок дії віднімання з дією додавання
- •Умови існування різниці, її єдиність
- •Правила віднімання
- •Відношення «більше на», «менше на»
- •Тема. Текстова задача. Способи розв’язування текстових задач. Прийоми пошуку плану розв’язування текстових задач, способи запису і перевірки. Прості текстові задачі на додавання і віднімання
- •Тема. Множення цілих невід’ємних чисел
- •1. Визначення добутку двох цілих невід’ємних чисел як числа елементів декартового добутку двох скінченних множин
- •2. Визначення добутку цілих невід’ємних чисел через суму. Операція множення цілих невід’ємних чисел
- •3. Визначення добутку декількох множників
- •Існування добутку, його єдиність
- •5.Закони множення: комутативний, асоціативний, дистрибутивний
- •Тема. Ділення на множині цілих невід’ємних чисел
- •2. Зв’язок ділення з множенням
- •3. Існування частки, її єдиність
- •4. Правила ділення
- •1. Правило ділення суми на число.
- •6. Ділення цілого невід’ємного числа на натуральне з остачею
- •Тема. Прості задачі на множення та ділення
- •V. Задачі на знаходження невідомого компонента арифметичної дії:
- •§7. Десяткова система числення
- •1. Десяткова система числення
- •Порівняння чисел у десятковій системі числення:
- •2. Додавання і віднімання багатоцифрових чисел в десятковій системі числення багатоцифрових чисел Алгоритм додавання цілих невід’ємних чисел у десятковій системі числення
- •Віднімання цілих невід’ємних чисел у десятковій системі числення
- •3. Множення і ділення багатоцифрових чисел в десятковій системі числення багатоцифрових чисел
- •§ 8. Подільність цілих невід’ємних чисел
- •1. Відношення подільності на множині натуральних чисел, його властивості
- •Рефлексивність.
- •Антисиметричність.
- •Транзитивність.
- •2. Теореми про подільність суми, різниці, добутку
- •3. Ознаки подільності на 2 і 5, 4 і 25, 3 і 9, на складені числа
- •4. Найбільший спільний дільник і найменше спільне кратне натуральних чисел, способи їх знаходження
- •Способи знаходження найбільшого спільного дільника і найменшого спільного кратного
- •§ 9. Позиційні і непозиційні системи числення
- •1. Позиційні і непозиційні системи числення
- •2. Дії над числами в позиційних системах числення, відмінних від десяткової
- •Питання для самоконтролю
- •Система вправ
- •Розділ IV раціональні і дійсні числа § 10. Раціональні числа. Дії над ними та їх властивості
- •Поняття про вимірювання відрізків. Розширення множини цілих невід’ємних чисел
- •Дроби та їх властивості
- •3. Визначення арифметичних дій над додатними раціональними числами
- •Закони додавання і множення
- •5. Упорядкованість множини додатних раціональних чисел
- •6. Запис додатних раціональних чисел у вигляді десяткових дробів
- •§ 11. Дійсні числа та дії над ними
- •1. Несумірні відрізки і ірраціональні числа. Невід’ємні дійсні числа
- •2. Арифметичні дії над дійсними невід’ємними числами. Їхні властивості
- •Від’ємні числа. Множина дійсних чисел
- •Питання для самоконтролю
- •Система вправ
- •Розділ V рівності і нерівності, рівняння. Функції § 12. Математичні вирази. Рівності і нерівності
- •Алфавіт математичної мови
- •Числові вирази. Значення числового виразу
- •Вирази зі змінною
- •Тотожні перетворення виразів
- •Числові рівності, властивості істинних числових рівностей
- •Числові нерівності, властивості істинних числових нерівностей
- •§ 13. Рівняння та їх властивості. Нерівності, що містять змінну
- •Рівняння з однією змінною
- •Рівносильність рівнянь
- •Нерівності з однією змінною
- •Рівносильність нерівностей
- •§ 14. Функції, графіки та їх властивості
- •Поняття функції. Графік функції
- •2. Лінійна функція
- •3. Пряма пропорційність
- •Обернена пропорційність
- •Функціональна пропедевтика в початковій школі
- •Іі етап
- •Питання для самоконтролю
- •Система вправ
- •Розділ VI величини та їх властивості § 15. Поняття величини та її вимірювання
- •Поняття вимірювання величин. Основні властивості числових значень додатніх скалярних величин
- •Величини, що вивчаються в курсі математики і – іv класів
- •§ 16. Довжина відрізка, її властивості і вимірювання
- •§ 17. Площа фігури, її властивості і вимірювання
- •Щоб обчислити площу прямокутника, треба визначити його довжину і ширину та знайти добуток цих чисел.
- •§ 18. Об’єм тіла, його властивості і вимірювання
- •§ 19. Маса тіла і її вимірювання
- •§ 20. Час та його вимірювання
- •§ 21. Вартість та залежність між величинами: ціна, кількість, вартість
- •Питання для самоконтролю
- •Система вправ
- •Точка, пряма, їх властивості
- •Властивості:
- •Властивості:
- •3.2. Означеня кута
- •Властивості вимірювання кутів:
- •Види кутів
- •4. Трикутники
- •5. Коло, круг
- •6.Многокутники
- •Властивості паралелограма:
- •Властивості квадрата:
- •Властивості ромба:
- •7. Многогранники і тіла обертання
- •Питання для самоконтролю
- •Система вправ
- •Література
- •Джерела інформації
Предикати (висловлювальні форми)
В математиці часто розглядають речення, які містять одну або декілька змінних. Наприклад: х > 3; х2 + 5х + 6 = 0; х + у = 7. Відносно цих речень не має смислу питання: істинні вони чи хибні, бо при одних значеннях змінної вони перетворюються в істинні висловлення, а при інших у хибні. Речення такого виду називаються предикатами або висловлювальними формами. Слово «предикат» у перекладі з латинської мови означає «присудок». Позначимо дані речення - h(х), f(х). Це висловлювальні форми від однієї змінної, або одномісна висловлювальна форма. Предикат «х = у» - є двомісним предикатом : р (х; у).
Висловлювальною формою або предикатом називається речення, яке містить одну або декілька змінних і яке перетворюється у висловлення при підстановці замість змінних конкретних значень.
Прикладами предикатів в шкільному курсі математики є: рівняння з однією або декількома змінними, нерівності зі змінними, системи рівнянь або нерівностей тощо. Найпоширеніші з предикатів в математиці мають свої позначення. Наприклад: «х дорівнює у» позначається «х = у»; «х менше або дорівнює у» позначається «х ≤ у»; «х паралельно у» позначається «х || у».
Відносно висловлювальної форми виникає питання: при яких значеннях змінної ця форма перетворюється в істинне або хибне висловлення. Якщо це рівняння, нерівність, система рівнянь чи нерівностей, то для відповіді на це питання їх треба розв’язати, тобто знайти їх множини розв’язків.
Наприклад:
знайти множину істинності предикатів:
2х
= 10; х
= 25;
>3.
Для відповіді на це запитання необхідно розв’язати дані рівняння, нерівність та вказати при яких значеннях х вони перетворюються у правильні числові рівності або правильну числову нерівність, тобто у істинні висловлення. Множинами істинності даних предикатів є множини їх розв’язків.
Квантори
Часто у висловленнях використовуються слова «всі», «деякі», «будь-які», «існує», «хоч би один», «кожен», «знайдеться» тощо.
Наприклад: «Всі числа 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 – одноцифрові», «Деякі з одноцифрових чисел діляться на 3», «Існують рівносторонні трикутники» тощо. Відносно цих речень можна сказати, що вони істинні або хибні, а тому ці речення є висловленнями. Якщо ж з даних речень забрати слова «всі», «деякі», «існують», то вони перетворюються у предикати.
Слова «всі», «деякі» тощо називаються кванторами. Слово «квантор» латинського походження і означає «скільки», тобто квантор показує, про скільки об’єктів (про всі чи про деякі) іде мова у даному реченні.
Розрізняють квантори
загальності
та
існування.
Квантори загальності позначають знаком
(перевернута перша буква англійського
слова All -
всі), а квантори існування знаком
(перевернута перша буква англійського
слова Exists – існує).
Квантори загальності (
|
Квантори існування ( ) |
всі |
існує |
кожен |
хоч би один |
будь-який |
деякі |
довільний |
знайдеться |
Форму висловлення з предикатом мають багато математичних речень, наприклад, «всі ромби є паралелограмами»; «деякі непарні числа діляться на 5»; «сума кутів будь-якого трикутника дорівнює 180°».
Правила встановлення значень істинності висловлень, що містять квантори, подані у таблиці:
Висловлення з квантором |
А |
А |
І |
шляхом доведення |
навести приклад |
X |
навести контрприклад |
шляхом доведення |
Для побудови заперечення висловлень, що містять квантори існує два способи:
1. Перед даним висловленням ставляться слова «неправильно, що».
2. Квантор загальності (існування) замінюється квантором існування (загальності), а речення, яке стоїть після квантора, замінюється його запереченням.
Наприклад: побудувати заперечення двома способами висловлення «Будь-яке натуральне число ділиться на 5».
1 спосіб: «Неправильно, що будь-яке натуральне число ділиться на 5».
2 спосіб: «Існує натуральне число, яке не ділиться на 5».