Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
радиолокация.docx
Скачиваний:
155
Добавлен:
15.11.2019
Размер:
639.5 Кб
Скачать

4. Эффективная отражающая площадь.

 

Определим эффективную отражающую площадь двухточечной цели (рис.3.3).

Мощность отражённого сигнала на входе приёмника:

(3.20)

где SА – эффективная площадь раскрыва антенны РЛС;

мРЛС – плотность потока мощности.

Таким образом, при k=const мощность отражённого сигнала будет прямо пропорциональна эффективной отражающей площади цели.

Мощность отражённого сигнала, в свою очередь, пропорциональна квадрату напряженности поля. Полагая, что амплитуды напряжённости поля, переизлучаемого точками 1 и 2, одинаковы и равны Е0, будем иметь

.

 

Отсюда мощность отражённого сигнала

(3.21)

и

,

(3.22)

где Sэфф1 – эффективная отражающая площадь каждого излучателя.

Следовательно, при изменении угла  величина Sэфф может колебаться в пределах (04)Sэфф1.  Считая все значения   равновероятными в интервале 02, получим среднее значение эффективной отражающей площади двухточечной цели:

.

(3.23)

Перейдём теперь к определению закона распределения эффективной отражающей площади сложной цели.

Мощность и амплитуда отражённого сигнала на входе приёмника связаны соотношением

,

 

где Rвх – входное сопротивление приёмника.

Принимая для простоты Rвх=1, получим

  .

 

Считая, что распределение амплитуды отражённого сигнала подчиняется закону распределения Релея (3.19), найдем закон распределения мощности, а, следовательно, и эффективной отражающей площади. Используем для этого формулу функционального преобразования законов распределения:

.

(3.24)

Учитывая, что  и дисперсия амплитуды есть средняя мощность флюктуирующего отражённого сигнала  , получим

.

(3.25)

Учитывая также, что

,

(3.26)

и подставляя (3.25) и (3.26) в (3.24), будем иметь

.

(3.27)

Переходя от мощности к пропорциональной ей величине отражающей эффективной отражающей поверхности, получим окончательное выражение для плотности распределения 

.

(3.28)

Обычно интересуются вероятностью того, что случайное значение будет не меньше выбранной расчётной величины Sэфф р. Интегрируя (3.28) в пределах от Sэфф р  до , получим

.

(3.29)

Отметим, что среднему значению эффективной отражающей площади соответствует вероятность W(Sэфф  Sэфф0)=0,37. Именно это значениеSэфф0 и используется в расчётах дальности действия РЛС.

5. Спектр флюктуаций амплитуды.

 

Ширина спектра амплитудных флюктуаций цели в основном  определяется степенью изрезанности диаграммы переизлучения и скоростью изменения ракурса облучения. Чем уже лепестки диаграммы и чем больше указанная скорость, тем выше частота флюктуаций. Ширина лепестков 0достигает в сантиметровом диапазоне (0,1 – 0,05)0 . Скорость изменения ракурса при маневрах самолётов может иметь величину  = 1020 град/сек. Таким образом, при грубой оценке антенна РЛС за одну секунду примет   «периодов» колебаний сигнала, что и определяет наивысшую частоту спектра флюктуаций Fфл1 =100400 Гц.

При рысканиях и случайных кренах самолёта скорость изменения ракурса составляет 1-2 град/сек, и частота флюктуаций, соответствующая этим движениям цели, лежит в пределах

 Гц.

(3.30)

Эта оценка хорошо согласуется с экспериментальными данными. На рис.3.5а показан типичный спектр амплитудных флюктуаций сигнала, отражённого от неманеврирующего самолёта, на рис.3.5,б– соответствующая этому спектру корреляционная функция. Видно, что флюктуации наиболее интенсивны в области частот 0-10 Гц, а время корреляции составляет 0,05 сек.

Следует заметить, что при малых дальностях в сантиметровом диапазоне волн флюктуации могут создаваться также вследствие биений сигналов, отражённых от различных точек цели, имеющих по отношению к РЛС различные радиальные скорости, а, следовательно, отражающих сигналы с различными доплеровскими смещениями частоты.

 

                                     а)                                                      б)

Рис.3.5.Спектр флюктуаций амплитуды и корреляционная функция сигнала, отражённого от самолёта.

 

Флюктуации амплитуды отражённого сигнала являются одним из основных источников ошибок в РЛС с автоматическим измерением угловых координат путём последовательно сравнения амплитуд (конический обзор). В такой системе автосопровождения для выделения сигнала ошибки используется узкополосный фильтр с резонансной частотой равной частоте сканирования. Поэтому частоту сканирования выбирают в области меньших интенсивностей флюктуаций – от 40 Гц и выше. Радикальным методом борьбы с ошибками, вызываемыми флюктуациями амплитуды сигнала, является применение моноимпульсных пеленгаторов, в которых осуществляется одновременное сравнение амплитуд, исключающее указанные ошибки. Характер изменения интенсивности амплитудных флюктуаций по частоте учитывается также при выборе постоянной времени АРУ в системах автосопровождения цели.