Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Применение ферментов в медицине.doc
Скачиваний:
39
Добавлен:
15.11.2019
Размер:
860.16 Кб
Скачать

2.7. Системная энзимотерапия

Одним из современных направлений использования ферментов в качестве лекарственных средств является системная энзимотерапия – лечение с помощью целенаправленно составленных смесей гидролитических ферментов, лечебная эффективность которых основана на комплексном воздействии на ключевые процессы, происходящие в организме. В состав препаратов (вобэнзим, флогэнзим и вобэ-мугос Е) входят ферменты растительного и животного происхождения. Ферменты оказывают противовоспалительное, иммуномодулирующее, антиагрегатное, фибринолитическое, противоотечное, вторичноанальгезирующее действие. Однако остаются открытыми вопросы, связанные с пониманием механизмов фармакологического действия, а также с возможностью резорбции перорально применяемых ферментов из кишечника в кровь.

2.8. Иммобилизованные ферменты и преимущества их применения

Сочетание уникальных каталитических свойств ферментов с преимуществом иммобилизованных ферментов как гетерогенных катализаторов позволило создать лекарственные препараты пролонгированного действия.

Под иммобилизацией понимают закрепление агента на некотором носителе путем химических (ковалентных) или физико-химических связей. В качестве носителей для иммобилизованных агентов могут использоваться различные вещества: природные и синтетические, органические и неорганические, высоко- и низкомолекулярные.

Наиболее широко в качестве природных носителей используются полисахариды, также как целлюлоза, декстан, агароза и их производные. Синтетические полимерные носители для иммобилизации ферментов созданы на основе стирола, акриловой кислоты, поливинилового спирта, полиуретана.

В качестве низкомолекулярных носителей применяются либо природные липиды (в основном фосфолипиды), либо их синтетические аналоги. Липидные носители используются в виде монослоёв на различных поверхностях или в виде бислоёв сферической формы (липосомы). Липосомы нашли широкое применение в косметологии, а также в составе препаратов для внутреннего применения.

Неорганические носители – это матрицы на основе силикагеля, глины, керамики, природных минералов и их оксидов.

В настоящее время в медицине в качестве носителей применяются целлюлоза, акриламид, активированный уголь, декстран, силикагель, глина, алюмогель и др.

Существуют две основные группы методов иммобилизации ферментов на носителе:

  • физические методы, не предполагающие связывания фермента с носителем ковалентными связями;

  • химические, при использовании которых между ферментом и носителем образуются ковалентные связи.

Самым старым способом иммобилизации является физическая абсорбция (Рис.4). В основе этого способа – физическое или ионное взаимодействие фермента с носителем, который может быть как неорганическим, так и органическим веществом. Недостаток такого метода иммобилизации является десорбция и её последствия. Для уменьшения десорбции иммобилизацию проводят: а) на носителе, модифицированным обработкой ионами металлов, различными функциональными группами, ковалентной пришивкой молекул, являющихся специфическими лигандами для иммобилизованных веществ; б) с агентом, до иммобилизации модифицированным введением ионогенных или гидрофобных групп; в) и использованием бифункциональных носителей.

Недостатки адсорбции можно избежать при иммобилизации ферментов в поры геля (Рис.4). Для иммобилизации ферментов применяются: несшитые полимерные гели, образующиеся полисахаридами (крахмалом, агар-агаром, альгинатом, каррагинаном и др.); сшитые полимерные гели, образуемые поливиниловым спиртом или полиакриламидные гели. Преимущества ферментов, включенных в матрицу заключаются в том, что фермент практически не прикреплён и, следовательно, не испытывает стерических помех, активный центр фермента не блокирован, фермент защищен от действия протеаз.

Рис. 4. Методы иммобилизации ферментов. а – адсорбция фермента на носителе; б – метод включения фермента в гель; в – ковалентное связывание фермента с носителем; г – включение фермента в полупроницаемые капсулы. 1 – носитель; 2 – молекулы фермента.

При использовании химических методов иммобилизации (Рис.4) ковалентные связи образуются за счёт содержания на поверхности фермента различных функциональных групп: гидроксильных, имидазольных, карбоксильных, тиоловых, аминогрупп и др. В некоторых случаях процесс иммобилизации протекает с участием третьего участника – сшивающего агента. Ковалентная иммобилизация позволяет получать препараты с заданными и контролируемыми свойствами.

Свойства иммобилизованных ферментов отличаются от свойств в чистом виде. Это связано со следующими факторами:

  • изменением конфигурации иммобилизованной молекулы фермента под влиянием носителя;

  • жёстко регулируемой концентрацией фермента;

  • стерическими затруднениями доступа субстрата к молекуле фермента;

  • замедлением (пролонгированием) выхода фермента из матрицы-носителя.

В процессе иммобилизации может быть затронута пространственная структура фермента, что в ряде случаев приводит к снижению активности. Причиной такого явления могут быть стерические ограничения, возникающие в том случае, когда иммобилизация препятствует непосредственному контакту между молекулами фермента и субстрата или мешает доступу субстрата в полимерную матрицу.

Высокая стабильность иммобилизованных ферментов, вероятно, является следствием уменьшения их подвижности, и подавления, вследствие этого, процессов агрегации и диссоциации молекул ферментов, а также появление стерических ограничений, приводящих к тому, что протеазы не могут проникнуть в микроокружение фермента и вызвать протеолиз.

Иммобилизованные ферменты обладают рядом преимуществ по сравнению со свободными молекулами:

  • повышение стабильности фермента и увеличение времени циркуляции в организме;

  • целенаправленное изменение свойства фермента для оптимизации каталитического процесса.

  • повышение стабильности фермента

  • многократное использование катализатора

  • получение продуктов реакции, не загрязнённых ферментом

  • проведение непрерывного процесса

  • целенаправленное изменение свойства фермента для оптимизации каталитического процесса.

Сочетание уникальных каталитических свойств ферментов с преимуществом иммобилизованных ферментов как гетерогенных катализаторов позволило не только создать лекарственные препараты пролонгированного действия, но также создать новые промышленные технологические процессы в производстве лекарственных средств.