
- •Кафедра теоретической и прикладной механики теоретическая механика Учебно-методический комплекс
- •1. Информация о дисциплине
- •1.1. Предисловие
- •1.2. Содержание дисциплины и виды учебной работы
- •1.2.1. Содержание дисциплины по гос
- •1.2.2. Объем дисциплины и виды учебной работы
- •Раздел I. Статика (40 часов)
- •1.2. Моменты силы. Пара сил (10 часов)
- •1.3. Произвольная система сил (10 часов)
- •1.4. Плоская система сил (10 часов)
- •Раздел 2. Кинематика (60 часов)
- •2.1. Кинематика точки (13 часов)
- •2.2. Простейшие движения твердого тела (9 часов)
- •2.3. Сложное движение точки (15 часов)
- •2.4. Плоское движение твердого тела (15 часов)
- •2.5. Сферическое движение твердого тела. Общий случай движения свободного твердого тела (8 часов)
- •Раздел 3. Динамика (100 часов)
- •3.1. Дифференциальные уравнения движения материальной точки (10 часов)
- •3.2. Прямолинейные колебания материальной точки (12 часов)
- •3.3. Введение в динамику механической системы. Теорема об изменении количества движения системы и о движении центра масс системы (8 часов)
- •3.4. Теорема об изменении кинетического момента системы относительно неподвижных центра и осей (10 часов)
- •3.5. Теорема об изменении кинетической энергии системы (10 часов)
- •3.6. Динамика плоского движения твердого тела (10 часов)
- •3.7. Основы кинетостатики (10 часов)
- •3.8. Введение в аналитическую механику (8 часов)
- •3.9. Принцип возможных перемещений (11 часов)
- •3.10. Общее уравнение динамики. Уравнения Лагранжа второго рода (11 часов)
- •3.11. Элементарная теория гироскопа (13 часов)
- •3.12. Основы теории удара (17 часов)
- •Заключение
- •2.2. Тематический план дисциплины
- •2.2.1. Тематический план дисциплины для студентов очной формы обучения
- •2.2.2. Тематический план дисциплины для студентов очно-заочной формы обучения
- •2.2.3. Тематический план дисциплины для студентов заочной формы обучения
- •2.2.4. Тематический план дисциплины для студентов очной формы обучения
- •2.2.5. Тематический план дисциплины для студентов очно-заочной формы обучения
- •2.2.6. Тематический план дисциплины для студентов заочной формы обучения
- •2.4.1.2. Практические занятия (очно-заочная форма обучения)
- •2.4.1.3. Практические занятия (заочная форма обучения)
- •2.4.2. Практические занятия
- •2.4.2.2. Практические занятия (очно-заочная форма обучения)
- •2.4.2.3. Практические занятия (заочная форма обучения)
- •2.5. Временной график изучения дисциплины
- •2.5.1. Временной график изучения дисциплины «Теоретическая механика»
- •2.5.2. Временной график изучения дисциплины «Теоретическая механика»
- •2.6. Балльно-рейтинговая система оценки знаний
- •3. Информационные ресурсы дисциплины
- •3.1. Библиографический список
- •3.2. Опорный конспект по дисциплине Введение
- •Раздел 1. Статика
- •1.1. Введение в механику
- •1.1.1. Некоторые основные понятия и определения
- •1.1.2. Основные законы механики
- •1.1.3. Свободные и несвободные тела. Связи и реакции связей
- •1.2. Моменты силы. Пара сил
- •1.2.1.Предмет статики
- •1.2.2. Условия и уравнения равновесия материальной точки
- •1.2.3. Момент силы относительно точки
- •1.2.4. Момент силы относительно оси
- •1.2.5. Пара сил и ее свойства
- •1.3. Произвольная система сил
- •1.3.1. Приведение силы к данному центру
- •1.3.2. Основная теорема статики
- •1.3.3. Определение модулей и направлений главного вектора и главного момента
- •1.3.4. Уравнения равновесия произвольной системы сил.
- •1.4. Плоская система сил
- •1.4.1. Уравнения равновесия плоской системы сил
- •1.4.2. Пример решения задачи на равновесие твердого тела под действием плоской системы сил
- •1.4.3. Равновесие системы тел
- •1.4.4. Пример решения задачи на равновесие твердого тела под действием произвольной системы сил
- •Раздел 2. Кинематика
- •2.1. Кинематика точки
- •2.1.1. Кинематические способы задания движения точки
- •2.1.2. Скорость точки
- •2.1.3. Ускорение точки
- •2.1.4. Естественные оси
- •2.1.5. Проекции вектора ускорения точки на естественные оси
- •2.1.6. Пример решения задачи на кинематику точки
- •2.2. Простейшие движения твердого тела
- •2.2.1. Поступательное движение твердого тела
- •2.2.2. Вращение твердого тела вокруг неподвижной оси и кинематические характеристики этого движения
- •2.2.3. Скорости и ускорения точек твердого тела, вращающегося вокруг неподвижной оси
- •2.2.4. Векторные формулы для кинематических характеристик вращающегося твердого тела
- •2.2.5. Пример решения задачи на вращение твердого тела вокруг неподвижной оси
- •Раздел 3. Динамика
- •3.1. Динамика материальной точки
- •3.1.1. Основное уравнение динамики материальной точки в декартовых и естественных координатах
- •3.1.2. Две основные задачи динамики материальной точки
- •3.1.3. Инерциальные системы отсчета
- •3.2. Прямолинейные колебания материальной точки
- •3.2.1. Свободные гармонические колебания материальной точки
- •3.2.2. Пример решения задачи на свободные колебания точки
- •3.2.2. Свободные затухающие колебания материальной точки
- •3.2.3. Вынужденные колебания материальной точки
- •3.3. Теоремы об изменении количества движения и о движении центра масс механической системы
- •3.3.1. Механическая система
- •3.3.2. Количество движения материальной точки и системы
- •3.3.3. Теорема об изменении количества движения системы
- •3.3.4. Теорема о движении центра масс системы
- •3.3.5. Пример решения задачи на теорему о движении центра масс
- •3.4. Теорема об изменении кинетического момента механической системы относительно неподвижных центра и оси
- •3.4.1. Момент количества движения материальной точки относительно центра и оси
- •3.4.2. Кинетический момент системы относительно центра и оси
- •3.4.3. Кинетический момент твердого тела, вращающегося вокруг неподвижной оси
- •3.4.4. Осевые моменты инерции однородных тел простейшей геометрической формы
- •3.4.5. Теоремы об изменении кинетического момента системы относительно неподвижных центра и оси
- •3.4.6. Дифференциальное уравнение вращения твердого тела вокруг неподвижной оси
- •3.4.7. Пример решения задач на теорему об изменении кинетического момента системы
- •3.5. Теорема об изменении кинетической энергии механической системы
- •3.5.1. Кинетическая энергия материальной точки, твердого тела и механической системы
- •3.5.2. Кинетическая энергия твердого тела
- •3.5.3. Работа и мощность силы
- •3.5.4. Работа силы тяжести и силы упругости
- •3.5.5. Работа и мощность сил, приложенных к твердому телу, вращающемуся вокруг неподвижной оси
- •3.5.6. Теорема об изменении кинетической энергии материальной точки
- •3.5.7. Теорема об изменении кинетической энергии системы
- •3.5.8. Потенциальное силовое поле
- •3.5.9. Закон сохранения механической энергии
- •3.5.10. Пример решения задачи на теорему об изменении кинетической энергии механической системы
- •Заключение
- •3.3. Глоссарий (краткий словарь терминов)
- •4. Блок контроля освоения дисциплины
- •4.1. Задания на контрольные работы и методические указания к их выполнению
- •4.1.1. Общие указания
- •4.1.2. Указания к выполнению контрольной работы 1 (Таблица 1)
- •4.1.3. Указания к выполнению контрольной работы 2 (Таблица 2)
- •4.1.4. Указания к выполнению контрольной работы 3 (Таблица 3)
- •4.1.5. Указания к выполнению контрольной работы 4 (Таблица 4)
- •4.1.6. Указания к выполнению контрольной работы 3 (Таблица 5)
- •4.1.7. Указания к выполнению контрольной работы 4 (Таблица 6)
- •4.2. Тестовые задания текущего контроля
- •4.3. Итоговый контроль. Вопросы к экзамену
3.5.4. Работа силы тяжести и силы упругости
Определим
работу силы тяжести точки
на некотором ее перемещении
(рис. 25). Считая это перемещение малым
по сравнению с радиусом Земли, можно
допустить, что модуль и направление
силы тяжести точки
являются постоянными. Выберем систему
отсчета
,
направив ось
вверх по вертикали.
И
спользуя
формулу (93) и учитывая, что проекции силы
тяжести на оси координат равны
,
получим
выражение для элементарной работы силы
тяжести:
.
Работа силы тяжести точки на конечном перемещении будет определяться определенным интегралом:
.
Здесь
- разность высот точки
в начальном и конечном положениях. Если
(точка опускается), то работа силы тяжести
положительна, если
(точка поднимается), то работа отрицательна.
Окончательно получим:
.
(100)
Таким образом, работа силы тяжести материальной точки равна взятому со знаком плюс или минус произведению модуля силы на вертикальное перемещение точки (при опускании точки работа положительна, при подъеме – отрицательна).
И
з
формулы (100) следует, что работа силы
тяжести не зависит от формы траектории
и закона движения точки по траектории.
На замкнутой траектории эта работа
равна нулю, так как тогда
.
В случае механической системы (в частности для твердого тела) работа силы тяжести определяется по формуле:
,
(101)
где
- вертикальное перемещение а
- масса центра масс системы (твердого
тела).
Определим
теперь работу силы упругости
,
действующую на материальную точку
(рис 26). Эта сила всегда направлена к
положению равновесия
,
по модулю пропорциональна расстоянию
точки от этого положения и определяется
выражением:
,
(102)
где - радиус-вектор точки относительно точки , - коэффициент жесткости упругого элемента, например, пружины.
Используя формулу (92), находим элементарную работу силы упругости :
.
Легко
проверить, что
.
(103)
В самом деле, имеем:
.
Тогда элементарная работа силы упругости равна:
,
или окончательно
.
(104)
Таким
образом, работа силы упругости
пропорциональна разности квадратов
начального и конечного отклонений точки
от положения равновесия. Подобно работе
силы тяжести, работа силы упругости не
зависит от вида траектории и закона
движения точки по траектории. На замкнутой
траектории эта работа равна нулю, так
как тогда
.
Если
работа производится пружиной, то величина
в формуле (104) заменяется величиной
деформации пружины в начальном и конечном
положениях.
3.5.5. Работа и мощность сил, приложенных к твердому телу, вращающемуся вокруг неподвижной оси
Рассмотрим твердое тело, вращающееся с угловой скоростью вокруг неподвижной оси под действием системы внешних сил (рис. 27). Пусть одна из сил приложена в точке тела , положение которой определяется радиус-вектором .
Из
кинематики известно, что скорость точки
вращающегося тела может быть выражена
формулой
.
Используя правило векторной алгебры,
найдем мощность приложенных к телу сил:
,
и
ли
,
(105)
где
- проекция главного момента
системы приложенных к телу сил на ось
,
то есть главный момент системы сил
относительно оси
.
Величина носит название вращающего момента. Таким образом, мощность системы сил, приложенных к вращающемуся вокруг неподвижной оси твердому телу, равна произведению угловой скорости тела и вращающего момента.
Определим
теперь работу этой системы сил.
Предположим, что под действием приложенных
сил тело повернулось за время
на угол
,
при этом точка тела
перешла из положения
в положение
.
Применяя полученные выше формулы,
найдем:
.
Итак, работа равна
.
(106)
Если
вращающий момент постоянен
,
то работа равна произведению момента
на угол
поворота тела, то есть
.
(107)