- •Кафедра теоретической и прикладной механики теоретическая механика Учебно-методический комплекс
- •1. Информация о дисциплине
- •1.1. Предисловие
- •1.2. Содержание дисциплины и виды учебной работы
- •1.2.1. Содержание дисциплины по гос
- •1.2.2. Объем дисциплины и виды учебной работы
- •Раздел I. Статика (40 часов)
- •1.2. Моменты силы. Пара сил (10 часов)
- •1.3. Произвольная система сил (10 часов)
- •1.4. Плоская система сил (10 часов)
- •Раздел 2. Кинематика (60 часов)
- •2.1. Кинематика точки (13 часов)
- •2.2. Простейшие движения твердого тела (9 часов)
- •2.3. Сложное движение точки (15 часов)
- •2.4. Плоское движение твердого тела (15 часов)
- •2.5. Сферическое движение твердого тела. Общий случай движения свободного твердого тела (8 часов)
- •Раздел 3. Динамика (100 часов)
- •3.1. Дифференциальные уравнения движения материальной точки (10 часов)
- •3.2. Прямолинейные колебания материальной точки (12 часов)
- •3.3. Введение в динамику механической системы. Теорема об изменении количества движения системы и о движении центра масс системы (8 часов)
- •3.4. Теорема об изменении кинетического момента системы относительно неподвижных центра и осей (10 часов)
- •3.5. Теорема об изменении кинетической энергии системы (10 часов)
- •3.6. Динамика плоского движения твердого тела (10 часов)
- •3.7. Основы кинетостатики (10 часов)
- •3.8. Введение в аналитическую механику (8 часов)
- •3.9. Принцип возможных перемещений (11 часов)
- •3.10. Общее уравнение динамики. Уравнения Лагранжа второго рода (11 часов)
- •3.11. Элементарная теория гироскопа (13 часов)
- •3.12. Основы теории удара (17 часов)
- •Заключение
- •2.2. Тематический план дисциплины
- •2.2.1. Тематический план дисциплины для студентов очной формы обучения
- •2.2.2. Тематический план дисциплины для студентов очно-заочной формы обучения
- •2.2.3. Тематический план дисциплины для студентов заочной формы обучения
- •2.2.4. Тематический план дисциплины для студентов очной формы обучения
- •2.2.5. Тематический план дисциплины для студентов очно-заочной формы обучения
- •2.2.6. Тематический план дисциплины для студентов заочной формы обучения
- •2.4.1.2. Практические занятия (очно-заочная форма обучения)
- •2.4.1.3. Практические занятия (заочная форма обучения)
- •2.4.2. Практические занятия
- •2.4.2.2. Практические занятия (очно-заочная форма обучения)
- •2.4.2.3. Практические занятия (заочная форма обучения)
- •2.5. Временной график изучения дисциплины
- •2.5.1. Временной график изучения дисциплины «Теоретическая механика»
- •2.5.2. Временной график изучения дисциплины «Теоретическая механика»
- •2.6. Балльно-рейтинговая система оценки знаний
- •3. Информационные ресурсы дисциплины
- •3.1. Библиографический список
- •3.2. Опорный конспект по дисциплине Введение
- •Раздел 1. Статика
- •1.1. Введение в механику
- •1.1.1. Некоторые основные понятия и определения
- •1.1.2. Основные законы механики
- •1.1.3. Свободные и несвободные тела. Связи и реакции связей
- •1.2. Моменты силы. Пара сил
- •1.2.1.Предмет статики
- •1.2.2. Условия и уравнения равновесия материальной точки
- •1.2.3. Момент силы относительно точки
- •1.2.4. Момент силы относительно оси
- •1.2.5. Пара сил и ее свойства
- •1.3. Произвольная система сил
- •1.3.1. Приведение силы к данному центру
- •1.3.2. Основная теорема статики
- •1.3.3. Определение модулей и направлений главного вектора и главного момента
- •1.3.4. Уравнения равновесия произвольной системы сил.
- •1.4. Плоская система сил
- •1.4.1. Уравнения равновесия плоской системы сил
- •1.4.2. Пример решения задачи на равновесие твердого тела под действием плоской системы сил
- •1.4.3. Равновесие системы тел
- •1.4.4. Пример решения задачи на равновесие твердого тела под действием произвольной системы сил
- •Раздел 2. Кинематика
- •2.1. Кинематика точки
- •2.1.1. Кинематические способы задания движения точки
- •2.1.2. Скорость точки
- •2.1.3. Ускорение точки
- •2.1.4. Естественные оси
- •2.1.5. Проекции вектора ускорения точки на естественные оси
- •2.1.6. Пример решения задачи на кинематику точки
- •2.2. Простейшие движения твердого тела
- •2.2.1. Поступательное движение твердого тела
- •2.2.2. Вращение твердого тела вокруг неподвижной оси и кинематические характеристики этого движения
- •2.2.3. Скорости и ускорения точек твердого тела, вращающегося вокруг неподвижной оси
- •2.2.4. Векторные формулы для кинематических характеристик вращающегося твердого тела
- •2.2.5. Пример решения задачи на вращение твердого тела вокруг неподвижной оси
- •Раздел 3. Динамика
- •3.1. Динамика материальной точки
- •3.1.1. Основное уравнение динамики материальной точки в декартовых и естественных координатах
- •3.1.2. Две основные задачи динамики материальной точки
- •3.1.3. Инерциальные системы отсчета
- •3.2. Прямолинейные колебания материальной точки
- •3.2.1. Свободные гармонические колебания материальной точки
- •3.2.2. Пример решения задачи на свободные колебания точки
- •3.2.2. Свободные затухающие колебания материальной точки
- •3.2.3. Вынужденные колебания материальной точки
- •3.3. Теоремы об изменении количества движения и о движении центра масс механической системы
- •3.3.1. Механическая система
- •3.3.2. Количество движения материальной точки и системы
- •3.3.3. Теорема об изменении количества движения системы
- •3.3.4. Теорема о движении центра масс системы
- •3.3.5. Пример решения задачи на теорему о движении центра масс
- •3.4. Теорема об изменении кинетического момента механической системы относительно неподвижных центра и оси
- •3.4.1. Момент количества движения материальной точки относительно центра и оси
- •3.4.2. Кинетический момент системы относительно центра и оси
- •3.4.3. Кинетический момент твердого тела, вращающегося вокруг неподвижной оси
- •3.4.4. Осевые моменты инерции однородных тел простейшей геометрической формы
- •3.4.5. Теоремы об изменении кинетического момента системы относительно неподвижных центра и оси
- •3.4.6. Дифференциальное уравнение вращения твердого тела вокруг неподвижной оси
- •3.4.7. Пример решения задач на теорему об изменении кинетического момента системы
- •3.5. Теорема об изменении кинетической энергии механической системы
- •3.5.1. Кинетическая энергия материальной точки, твердого тела и механической системы
- •3.5.2. Кинетическая энергия твердого тела
- •3.5.3. Работа и мощность силы
- •3.5.4. Работа силы тяжести и силы упругости
- •3.5.5. Работа и мощность сил, приложенных к твердому телу, вращающемуся вокруг неподвижной оси
- •3.5.6. Теорема об изменении кинетической энергии материальной точки
- •3.5.7. Теорема об изменении кинетической энергии системы
- •3.5.8. Потенциальное силовое поле
- •3.5.9. Закон сохранения механической энергии
- •3.5.10. Пример решения задачи на теорему об изменении кинетической энергии механической системы
- •Заключение
- •3.3. Глоссарий (краткий словарь терминов)
- •4. Блок контроля освоения дисциплины
- •4.1. Задания на контрольные работы и методические указания к их выполнению
- •4.1.1. Общие указания
- •4.1.2. Указания к выполнению контрольной работы 1 (Таблица 1)
- •4.1.3. Указания к выполнению контрольной работы 2 (Таблица 2)
- •4.1.4. Указания к выполнению контрольной работы 3 (Таблица 3)
- •4.1.5. Указания к выполнению контрольной работы 4 (Таблица 4)
- •4.1.6. Указания к выполнению контрольной работы 3 (Таблица 5)
- •4.1.7. Указания к выполнению контрольной работы 4 (Таблица 6)
- •4.2. Тестовые задания текущего контроля
- •4.3. Итоговый контроль. Вопросы к экзамену
3.5.2. Кинетическая энергия твердого тела
Используя общую формулу (85) можно получить выражения для кинетической энергии твердого тела при различных случаях его движения.
А) Поступательное движение.
При поступательном движении твердого тела скорости всех его точек, в том числе и скорость его центра масс, одинаковы, поэтому:
;
,
.
Тогда кинетическая энергия тела будет равна:
.
(88)
Кинетическая энергия тела вычисляется как для точки (центра масс тела), в которой сосредоточена вся масса тела.
Б) Вращение вокруг неподвижной оси.
В
этом случае модуль скорости любой точки
тела будет равен
(смотри тему 2.2), а кинетическая энергия
тела выразится как:
,
(89)
где - момент инерции тела относительно оси вращения (см. тему 3.4 формула (75)).
Кинетическая энергия твердого тела, вращающегося вокруг неподвижной оси, равна половине произведения его осевого момента инерции на квадрат угловой скорости.
В) Плоское движение.
Из кинематики (смотри тему 2.4) известно, что плоское движение можно рассматривать как сложное, состоящее из поступательного движения вместе с полюсом (за который мы здесь выбираем центр масс тела ) и вращательного движения вокруг оси, проходящей через полюс (центр масс). Тогда на основании теоремы Кенига можно написать:
.
(90)
Кинетическая энергия твердого тела, совершающего плоское движение, равна арифметической сумме кинетической энергии поступательного движения тела вместе с центром масс и кинетической энергии его вращательного движения вокруг оси, проходящей через центр масс.
3.5.3. Работа и мощность силы
Работой силы называется мера действия силы на некотором перемещении точки ее приложения.
Пусть
точка
под действием приложенной к ней силы
движется по некоторой траектории,
выбранной за криволинейную координатную
ось
(рис. 24). Тогда элементарная
работа силы
может быть представлена следующей
скалярной величиной:
,
(91)
где
- модуль дифференциала дуговой координаты
,
модуль
вектора силы.
Элементарная
работа здесь обозначается
,
а не
,
так как в общем случае она может не
являться полным дифференциалом функции
координат
.
Формулу (91) можно представить в виде скалярного произведения
,
(92)
где
- вектор элементарного перемещения
точки
за время
,
направленное так же, как и вектор скорости
точки
.
Это следует из соотношения
,
полученного из известной формулы
.
При этом полагаем, что
.
Наконец,
обозначая проекции силы
на оси координат
как
,
а проекции элементарного перемещения
как
,
можно записать выражение для элементарной
работы в следующем виде:
.
(93)
Работа
силы
на конечном перемещении точки между
положениями на траектории
и
определяется как интегральная сумма
элементарных работ, то есть как
криволинейный интеграл от элементарной
работы, взятый по дуге
траектории:
.
(94)
Эта работа в общем случае может быть вычислена, если известен закон движения точки по траектории; причем если сила является функцией только координат точки, то тогда достаточно иметь уравнение траектории точки в параметрической форме, то есть:
.
Допустим,
что на точку действует система сил
.
Тогда элементарная работа равнодействующей
в соответствии с (92) будет равна:
.
(95)
Но
так как
,
(96)
то получим:
,
(97)
где
- элементарная работа составляющей силы
.
Интегрируя обе части равенства (97) по дуге , получим:
,
(98)
то есть работа равнодействующей системы сил, приложенных к данной точке, равна алгебраической сумме работ составляющих сил.
Мощностью силы называется величина, определяющая работу, совершаемую силой в единицу времени. Эта величина определяется следующим образом:
.
(99)
