
- •Кафедра теоретической и прикладной механики теоретическая механика Учебно-методический комплекс
- •1. Информация о дисциплине
- •1.1. Предисловие
- •1.2. Содержание дисциплины и виды учебной работы
- •1.2.1. Содержание дисциплины по гос
- •1.2.2. Объем дисциплины и виды учебной работы
- •Раздел I. Статика (40 часов)
- •1.2. Моменты силы. Пара сил (10 часов)
- •1.3. Произвольная система сил (10 часов)
- •1.4. Плоская система сил (10 часов)
- •Раздел 2. Кинематика (60 часов)
- •2.1. Кинематика точки (13 часов)
- •2.2. Простейшие движения твердого тела (9 часов)
- •2.3. Сложное движение точки (15 часов)
- •2.4. Плоское движение твердого тела (15 часов)
- •2.5. Сферическое движение твердого тела. Общий случай движения свободного твердого тела (8 часов)
- •Раздел 3. Динамика (100 часов)
- •3.1. Дифференциальные уравнения движения материальной точки (10 часов)
- •3.2. Прямолинейные колебания материальной точки (12 часов)
- •3.3. Введение в динамику механической системы. Теорема об изменении количества движения системы и о движении центра масс системы (8 часов)
- •3.4. Теорема об изменении кинетического момента системы относительно неподвижных центра и осей (10 часов)
- •3.5. Теорема об изменении кинетической энергии системы (10 часов)
- •3.6. Динамика плоского движения твердого тела (10 часов)
- •3.7. Основы кинетостатики (10 часов)
- •3.8. Введение в аналитическую механику (8 часов)
- •3.9. Принцип возможных перемещений (11 часов)
- •3.10. Общее уравнение динамики. Уравнения Лагранжа второго рода (11 часов)
- •3.11. Элементарная теория гироскопа (13 часов)
- •3.12. Основы теории удара (17 часов)
- •Заключение
- •2.2. Тематический план дисциплины
- •2.2.1. Тематический план дисциплины для студентов очной формы обучения
- •2.2.2. Тематический план дисциплины для студентов очно-заочной формы обучения
- •2.2.3. Тематический план дисциплины для студентов заочной формы обучения
- •2.2.4. Тематический план дисциплины для студентов очной формы обучения
- •2.2.5. Тематический план дисциплины для студентов очно-заочной формы обучения
- •2.2.6. Тематический план дисциплины для студентов заочной формы обучения
- •2.4.1.2. Практические занятия (очно-заочная форма обучения)
- •2.4.1.3. Практические занятия (заочная форма обучения)
- •2.4.2. Практические занятия
- •2.4.2.2. Практические занятия (очно-заочная форма обучения)
- •2.4.2.3. Практические занятия (заочная форма обучения)
- •2.5. Временной график изучения дисциплины
- •2.5.1. Временной график изучения дисциплины «Теоретическая механика»
- •2.5.2. Временной график изучения дисциплины «Теоретическая механика»
- •2.6. Балльно-рейтинговая система оценки знаний
- •3. Информационные ресурсы дисциплины
- •3.1. Библиографический список
- •3.2. Опорный конспект по дисциплине Введение
- •Раздел 1. Статика
- •1.1. Введение в механику
- •1.1.1. Некоторые основные понятия и определения
- •1.1.2. Основные законы механики
- •1.1.3. Свободные и несвободные тела. Связи и реакции связей
- •1.2. Моменты силы. Пара сил
- •1.2.1.Предмет статики
- •1.2.2. Условия и уравнения равновесия материальной точки
- •1.2.3. Момент силы относительно точки
- •1.2.4. Момент силы относительно оси
- •1.2.5. Пара сил и ее свойства
- •1.3. Произвольная система сил
- •1.3.1. Приведение силы к данному центру
- •1.3.2. Основная теорема статики
- •1.3.3. Определение модулей и направлений главного вектора и главного момента
- •1.3.4. Уравнения равновесия произвольной системы сил.
- •1.4. Плоская система сил
- •1.4.1. Уравнения равновесия плоской системы сил
- •1.4.2. Пример решения задачи на равновесие твердого тела под действием плоской системы сил
- •1.4.3. Равновесие системы тел
- •1.4.4. Пример решения задачи на равновесие твердого тела под действием произвольной системы сил
- •Раздел 2. Кинематика
- •2.1. Кинематика точки
- •2.1.1. Кинематические способы задания движения точки
- •2.1.2. Скорость точки
- •2.1.3. Ускорение точки
- •2.1.4. Естественные оси
- •2.1.5. Проекции вектора ускорения точки на естественные оси
- •2.1.6. Пример решения задачи на кинематику точки
- •2.2. Простейшие движения твердого тела
- •2.2.1. Поступательное движение твердого тела
- •2.2.2. Вращение твердого тела вокруг неподвижной оси и кинематические характеристики этого движения
- •2.2.3. Скорости и ускорения точек твердого тела, вращающегося вокруг неподвижной оси
- •2.2.4. Векторные формулы для кинематических характеристик вращающегося твердого тела
- •2.2.5. Пример решения задачи на вращение твердого тела вокруг неподвижной оси
- •Раздел 3. Динамика
- •3.1. Динамика материальной точки
- •3.1.1. Основное уравнение динамики материальной точки в декартовых и естественных координатах
- •3.1.2. Две основные задачи динамики материальной точки
- •3.1.3. Инерциальные системы отсчета
- •3.2. Прямолинейные колебания материальной точки
- •3.2.1. Свободные гармонические колебания материальной точки
- •3.2.2. Пример решения задачи на свободные колебания точки
- •3.2.2. Свободные затухающие колебания материальной точки
- •3.2.3. Вынужденные колебания материальной точки
- •3.3. Теоремы об изменении количества движения и о движении центра масс механической системы
- •3.3.1. Механическая система
- •3.3.2. Количество движения материальной точки и системы
- •3.3.3. Теорема об изменении количества движения системы
- •3.3.4. Теорема о движении центра масс системы
- •3.3.5. Пример решения задачи на теорему о движении центра масс
- •3.4. Теорема об изменении кинетического момента механической системы относительно неподвижных центра и оси
- •3.4.1. Момент количества движения материальной точки относительно центра и оси
- •3.4.2. Кинетический момент системы относительно центра и оси
- •3.4.3. Кинетический момент твердого тела, вращающегося вокруг неподвижной оси
- •3.4.4. Осевые моменты инерции однородных тел простейшей геометрической формы
- •3.4.5. Теоремы об изменении кинетического момента системы относительно неподвижных центра и оси
- •3.4.6. Дифференциальное уравнение вращения твердого тела вокруг неподвижной оси
- •3.4.7. Пример решения задач на теорему об изменении кинетического момента системы
- •3.5. Теорема об изменении кинетической энергии механической системы
- •3.5.1. Кинетическая энергия материальной точки, твердого тела и механической системы
- •3.5.2. Кинетическая энергия твердого тела
- •3.5.3. Работа и мощность силы
- •3.5.4. Работа силы тяжести и силы упругости
- •3.5.5. Работа и мощность сил, приложенных к твердому телу, вращающемуся вокруг неподвижной оси
- •3.5.6. Теорема об изменении кинетической энергии материальной точки
- •3.5.7. Теорема об изменении кинетической энергии системы
- •3.5.8. Потенциальное силовое поле
- •3.5.9. Закон сохранения механической энергии
- •3.5.10. Пример решения задачи на теорему об изменении кинетической энергии механической системы
- •Заключение
- •3.3. Глоссарий (краткий словарь терминов)
- •4. Блок контроля освоения дисциплины
- •4.1. Задания на контрольные работы и методические указания к их выполнению
- •4.1.1. Общие указания
- •4.1.2. Указания к выполнению контрольной работы 1 (Таблица 1)
- •4.1.3. Указания к выполнению контрольной работы 2 (Таблица 2)
- •4.1.4. Указания к выполнению контрольной работы 3 (Таблица 3)
- •4.1.5. Указания к выполнению контрольной работы 4 (Таблица 4)
- •4.1.6. Указания к выполнению контрольной работы 3 (Таблица 5)
- •4.1.7. Указания к выполнению контрольной работы 4 (Таблица 6)
- •4.2. Тестовые задания текущего контроля
- •4.3. Итоговый контроль. Вопросы к экзамену
2.1.3. Ускорение точки
Ускорение точки характеризует быстроту изменения вектора скорости в данный момент времени как по модулю, так и по направлению.
Пусть
точка
,
движущаяся относительно неподвижной
системы отсчета, в момент времени
занимает положение
,
а в момент
– положение
;
скорости точки в этих положениях
представлены векторами
и
(рис. 26).
Перенесем
начало вектора
в точку
и построим параллелограмм, в котором
диагональю будет
,
а одной из сторон – вектор
.
Другая сторона будет изображать вектор
,
т. е. приращение вектора
за время
.
Векторная величина
называется средним ускорением точки
за время
,
вектор
направлен так же, как и вектор
.
Ускорением точки в данный момент времени называется вектор , равный пределу, к которому стремится при .
.
(53)
Учитывая формулу (41), можно записать
.
(54)
Ускорение точки в данный момент времени равно первой производной по времени от вектора скорости точки или второй производной по времени от радиус-вектора точки.
Проведем
из какой-либо неподвижной точки
векторы
,
в моменты времени
(рис.26а). Геометрическое место концов
этих векторов представляет годограф
вектора
скорости точки. Среднее ускорение
за время
направлено по хорде
годографа, а ускорение
в данный момент времени
параллельно касательной к годографу
скорости в точке
.
Пусть движение точки задается уравнениями (37). Формулу (53) с учетом зависимости (44) можно представить в следующем виде:
.
(55)
С другой стороны
(56),
где
–
проекции вектора ускорения точки на
оси координат. Сравнивая (55) и (56) находим
.
(57)
Но
Поэтому получим
.
(58)
Следовательно, проекции вектора ускорения точки на неподвижные оси декартовых координат равны первым производным по времени от соответствующих проекций скоростей или вторым производным по времени от соответствующих координат.
Модуль ускорения точки равен
,
(59)
а
направление вектора
точки определяется следующими
направляющими косинусами:
. (60)
2.1.4. Естественные оси
Дальнейшее
изучение ускорения точки предполагает
введение понятия об естественных
осях.
Рассмотрим точку
,
которая движется по траектории,
представляющей собой пространственную
кривую (рис 27). Выберем на ней начало
и положительное направление отсчета
дуговой координаты
.
Выберем также вблизи точки
некоторую точку
и проведем через них касательные к
кривой
и
.
Обозначим орты касательных в этих точках
соответственно
и
.
Перенесем орт
в точку
и проведем через орты
и
плоскость
.
При неограниченном приближении точки
к точке
,
вследствие изменения положения орта
плоскость
будет поворачиваться вокруг касательной,
проходящей через точку
,
приближаясь к некоторой плоскости
.
Эта плоскость, представляющая собой
предельное положение плоскости
,
называется соприкасающейся
плоскостью
данной кривой в точке
.
П
лоскость
(рис 27б.), проведенная через точку
перпендикулярно касательной в этой
точке называется нормальной
плоскостью.
Любая прямая, переходящая через точку
и
лежащая в этой плоскости является
нормалью кривой в точке
.
Нормаль
,
расположенная в соприкасающейся
плоскости, называется главной
нормалью.
Положительное направление главной
нормали определяется ортом главной
нормали
,
направленным в сторону вогнутости
кривой.
Н
ормаль
,
перпендикулярная соприкасающейся
плоскости, называется бинормалью
к кривой в точке
.
Положительное направление бинормали
определяется ее ортом
,
причем
,
т.е. орты
ориентированы друг относительно друга
так же, как орты
правой прямоугольной декартовой системы
координат.
Плоскость , проходящая через касательную и бинормаль, называется спрямляющей.
Отметим, что для плоской траектории соприкасающейся будет плоскость, в которой лежит кривая, а главной нормалью будет нормаль, проведенная в точке в этой плоскости в сторону вогнутости кривой.
Три
взаимно перпендикулярные оси: касательная
,
главная нормаль
и бинормаль
образуют естественные
оси кривой
в данной точке. Двигаясь по кривой вместе
с точкой
естественные оси, оставаясь ортогональными,
изменяют свою ориентацию в пространстве
относительно неподвижной системы
отсчета
.