Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Куценко Военная токсикология радиология медицин...doc
Скачиваний:
29
Добавлен:
14.11.2019
Размер:
5.23 Mб
Скачать

16.4. Действие излучений на ткани, органы и системы. Радиочувствительность тканей

Ткани организма весьма различаются по радиочувствительности. Если гибель лимфоцитов или костномозговых клеток удается зарегистрировать после облучения в дозах, равных десятым долям грея, то мышечные и нервные клетки выдерживают нередко дозы в десятки грей. Определен­ная закономерность в распределении тканей по радиочувствительности отмечена еще в самом начале изучения биологического действия излуче­ний в 1906 г. французскими учеными Бергонье и Трибондо. Ими было сформулировано правило, согласно которому ткани тем более радиочувст­вительны, чем выше пролиферативная активность составляющих их клеток, и тем более радиорезистентны, чем выше степень их дифференцировки.

Высокую радиочувствительность активно пролиферирующих клеток связывают с особой ролью при облучении повреждений уникальных структур ядерной ДНК (см. выше). На тканевом уровне острое радиаци­онное поражение проявляется нарушениями структуры и функции, зави­сящими прежде всего от клеточного опустошения ткани.

Хотя радиочувствительность тканей определяется главным образом радиочувствительностью составляющих эту ткань клеток, нельзя сбрасы­вать со счетов и опосредованные влияния радиации через поражение ре­гулирующих систем — нервной, эндокринной. Кроме того, радиочувст­вительность органа зависит от его функционального состояния. Так, чувствительность обычно повышается при усилении функции органа (молочной железы в периоде лактации, щитовидной железы в состоянии гипертериоза и т. д.).

373

i лапа iu. rry^rivurn-w ivi rni.ui\riu ъ/ч/чп-гмш

Во взрослом организме, в соответствии с правилом Бергонье и Трибон-до, непролиферирующие высокодифференцированные нервные клетки высокорадиорезистентны. Однако это относится лишь к морфологиче­ским проявлениям повреждения. Функциональные же реакции нейронов обнаруживаются в ответ на облучение уже в ничтожных дозах. Так, ран­ние изменения электроэнцефалограммы появляются после облучения в дозе 0,5 мГр; облучение в дозе 1 мГр вызывает заметное удлинение време­ни рефлекса в ответ на электрораздражение. Спящие крысы просыпают­ся в результате облучения в дозе 0,01—0,02 Гр. Волны электрической ак­тивности в переживающих in vitro нервных клетках вызывает облучение в дозе 0,01 Гр. Все это говорит о высокой реактивности элементов нервной системы по отношению к радиационным воздействиям.

Можно заключить, что термин «радиочувствительность» в его обыч­ном употреблении не очень удачен. Казалось бы, логичнее, как это пред­лагал в свое время видный патофизиолог и радиобиолог П. Д. Горизон­тов, понимать под радиочувствительностью количественное выражение любых форм реакции биологического объекта на облучение, а не только повреждения. Если бы это предложение утвердилось, нервную ткань на­зывали бы наиболее радиочувствительной. Однако в радиобиологии тер­мин радиочувствительность применяется чаще всего как синоним радио-поражаемости.

Радиационное поражение системы крови

Система крови относится к числу систем клеточного обновления, функ­ционирование которых обеспечивает поддержание постоянного числа функциональных клеток, обладающих короткой продолжительностью жизни. Схема функционирования такой системы приведена на рис. 68.

Послелучевые изменения, происходящие в системе клеточного об­новления, будут рассмотрены на примере гранулоцитопоэза.

Одним из важных эффектов является приостановка клеточного деле­ния (блок митозов), которая тем продолжительнее, чем выше доза облу­чения.

По выходе из блока часть клеток, в которых повреждения ядерной ДНК не бьыи репарированы, подвергается репродуктивной гибели. Часть клеток погибает по интерфазному типу. С повышением дозы число поги­бающих клеток увеличивается. Наиболее радиочувствительны клетки стволового отдела (Do составляет около 1 Гр), и по критерию утраты способности к образованию колоний дочерних клеток число стволовых клеток резко снижается практически сразу после облучения. Высокой ра­диочувствительностью обладают и клетки пула пролиферации. Что же ка­сается клеток пула созревания, то их радиочувствительность сравнитель­но невысока, большинство этих клеток сохраняют жизнеспособность, созревают и выходят в периферическую кровь. В результате количество клеток в костном мозге, а затем и в периферической крови довольно бы-


(?) 2 111


Изменения после облучения, дни



стро убывает. Вначале снижается число наиболее молодых, наиболее ра­диочувствительных клеток. Затем процесс опустошения захватывает все более и более зрелые отделы, так как созревание и выход в кровь созрев­ших клеток продолжаются, а восполнения их числа за счет поступления из пролиферативного пула нет. Наконец, и в периферической крови раз­вивается гранулоцитопения (рис. 68).

Рис. 68. Схема развития опустошения в системе клеточного обновления после облучения в высокой дозе (по В. Бонду и соавт., 1971)

На ход кривой содержания в крови гранулоцитов влияют и другие факторы. Так, в ближайшие часы после облучения обнаруживается ран­ний нейтрофильный лейкоцитоз перераспределительного характера — неспецифическая реакция, наблюдаемая при воздействии и других раз­дражителей. Важное значение имеет так называемый абортивный подъем

374

375

i нова id. rnfjyi\javi\jjiv/i кпсигхпс >jwwli\i[i

числа нейтрофилов, наблюдающийся у человека с середины 2-й нед по­сле облучения и сменяющийся еще более глубоким снижением количест­ва этих клеток. Абортивный подъем объясняют возобновлением (после выхода из митотического блока) пролиферации клеток, способных к ограниченному числу делений, что обеспечивает лишь временное увели­чение числа зрелых нейтрофилов. Однако и оно оказывается полезным, сокращая период глубокой нейтропении.

В клетках периферической крови облученных обнаруживаются мор­фологические и цитохимические изменения, что свидетельствует о их не­полной функциональной полноценности. Однако в основном клетки крови после облучения в дозах несколько грей (при острой лучевой бо­лезни) выполняют свои функции удовлетворительно, и главной причи­ной клинических нарушений, связанных с поражением кроветворения, являются не качественные изменения в клетках, а уменьшение их коли­чества.

Начало снижения содержания в крови отдельных видов функциона­льных клеток после облучения и срок, когда глубина этого снижения максимальна, зависят главным образом от времени, в течение которого клетки-предшественники находятся в составе пулов пролиферации, со­зревания, а также от продолжительности циркуляции в крови созревших клеток. Эти параметры различны как для разных клеточных линий, так и для разных видов животных. У человека прохождение предшественников гранулоцитов через пул пролиферации занимает 4—6 дней и примерно столько же времени — прохождение через пул созревания. Зрелые грану-лоциты циркулируют в крови в среднем всего 8—10 ч.

В соответствии с названными сроками нейтропения у человека начи­нает обнаруживаться примерно через 5 сут после облучения. Продолжи­тельность пребывания в крови человека тромбоцитов оценивается в 6—8 дней и минимальный их уровень достигается через 2—2,5 нед.

Длительность жизни эритроцитов в крови составляет 100—120 дней. Поражение зрелых эритроцитов после облучения в дозах, составляющих несколько грей, невелико и поэтому даже в случае полного прекращения продукции новых эритроцитов их число в сутки может снизиться при­мерно на 1% и анемия развивается очень медленно (если не возникнет кровотечения).

Продолжительность блока митозов зависит от дозы облучения и со­ставляет от нескольких часов до суток, редко более. После выхода из блока сохранившие жизнеспособность стволовые клетки возобновляют пролиферацию, создавая тем самым основу для восстановления морфо­логического состава костного мозга, а затем и крови. Это восстановле­ние числа стволовых кроветворных клеток можно наблюдать уже тогда, когда в крови только еще начался процесс опустошения. Однако, чтобы процесс восстановления в стволовом отделе реализовался увеличением числа зрелых функциональных клеток, необходимо время как для вос­становления достаточного числа самих стволовых клеток, так и для про­хождения клеток через пулы деления и созревания.

Выраженность цитопении (т. е. глубина, время достижения и продол­жительность снижения содержания в крови клеток) нарастает с увеличе­нием дозы облучения.

Поражение кроветворения и связанные с ним клинические проявле­ния, в первую очередь инфекционные осложнения и повышенная крово­точивость, получили наименование костномозгового синдрома, который лежит в основе одноименной формы ОЛБ, развивающейся после облуче­ния в дозах 1—10 Гр.

16.4.2. Радиационное поражение органов желудочно-кишечного тракта

При общем облучении среди органов желудочно-кишечного тракта наи­более значимо поражение эпителия слизистой оболочки тонкой кишки, который является принципиально такой же системой клеточного обнов­ления, как и костный мозг. Но если в костном мозге клетки разной степе­ни созревания располагаются без видимого порядка, в слизистой оболоч­ке кишки взаимное расположение клеток, относящихся к разным пулам, четко разграничено.

На дне крипт находятся стволовые клетки. По мере деления стволовых клеток и последующего их созревания клетки продвигаются по направле­нию к устью крипт и далее по стенке ворсинки к ее верхушке, откуда слу-щиваются в просвет кишки. Утрата клеток с ворсинок сбалансирована притоком вновь образованных клеток из крипт. Продвижение клетки от дна крипты до верхушки ворсинки занимает около 4 сут.

Как и в других системах клеточного обновления, в эпителии кишки после облучения наступает временный блок митозов, погибают прежде всего стволовые и другие делящиеся клетки. Созревающие и функцио­нальные клетки, будучи радиорезистентны (Do составляет 15 Гр), после облучения продолжают продвижение к верхушкам ворсинок и слущива-ются. Эпителиальная выстилка кишки при отсутствии пополнения за счет клеточного деления быстро исчезает, ворсинки «оголяются» и уплощаются.

Стволовые энтероциты менее чувствительны к гамма- и рентгенов­скому облучению, чем стволовые кроветворные клетки, вследствие более высокой активности в них систем внутриклеточной репарации поврежде­ний ДНК: Dq для стволовых клеток составляет в костном мозге величину менее 1 Гр, а в эпителии тонкой кишки — порядка 4 Гр. Поэтому опасное для жизни повреждение эпителия кишки происходит при более высоких дозах (порядка 10 Гр), чем дозы, достаточные для глубокого повреждения костного мозга (4-5 Гр). В случаях, когда доза общего облучения дости­гает величины, при которой повреждение кишки становится несовмести­мым с сохранением жизни организма, патологический процесс развива­ется очень быстро и уже к концу 3-5-х сут происходит полная денудация слизистой оболочки. Несовместимая с жизнью панцитопения в крови развивается значительно позднее.

37В

3VV

I лава 1 ь. р/щпуотл mi ичсичис juwtft i ы

Если в ранние сроки не наступит смертельного исхода, сохранившие­ся стволовые клетки эпителия кишки обеспечивают его быструю регене­рацию, восстановление структуры и функции кишечной стенки.

Описанные изменения слизистой оболочки тонкой кишки, достигаю­щие в случае общего облучения максимальной выраженности при дозах, превышающих 10 Гр, лежат в основе развития так называемого кишечно­го синдрома.

Другие отделы желудочно-кишечного тракта менее радиочувствитель­ны, чем тонкая кишка, и их повреждение при общем облучении чаще всего не имеет самостоятельного значения.

Во всех отделах желудочно-кишечного тракта после общего облуче­ния в дозах, не доходящих до уровня, при котором типичным является развитие кишечного синдрома, могут наблюдаться эрозии, изъязвления, местные некрозы вплоть до перфорации кишечной стенки. Чаще всего возникновение этих проявлений связано с развитием вторичной инфек­ции и геморрагии на почве костномозгового синдрома. В практическом отношении наиболее важны некротическая энтеропатия и орофарингеа-льный синдром.

При местном облучении области живота в достаточно высоких дозах возможно возникновение некрозов и изъязвлений участков желудоч­но-кишечного тракта, подвергшихся воздействию.

16.4.3. Лучевое поражение центральной нервной системы

Выраженные морфологические проявления поражения клеток централь­ной нервной системы наблюдаются, как правило, только после воздейст­вия в дозах, приближающихся к 50 Гр и выше. Наиболее ранние измене­ния обнаруживаются в синапсах (слипание синаптических пузырьков в скоплениях, появляющихся в центральной части пресинаптических тер­миналов или в активной зоне). При световой микроскопии через 2 ч пос­ле облучения в таких дозах обнаруживается набухание клеток, пикноз ядер зернистых клеток мозжечка, реже — других нейронов, явления вас-кулита, менингита, хориоидального плексита с гранулоцитарной инфи­льтрацией. Максимум изменений приходится на 1-е сут после облучения. При более высоких дозах может наблюдаться ранний некроз ткани мозга. При облучении в дозах 10—30 Гр в клетках центральной нервной систе­мы обнаруживают угнетение окислительного фосфорилирования. Послед­нее связывают с дефицитом АТФ, расходуемого в процессе репарации вы­званных облучением разрывов ДНК. Развиваются очаги так называемого реактивного состояния нервных клеток: набухание нейронов, повышение аргирофильности. При этом погибают, как правило, лишь отдельные ней­роны. Распространенные очаговые изменения в вегетативных ганглиях могут явиться одной из причин дискоординации функций внутренних ор­ганов.

Отмеченные изменения в нервных клетках неспецифичны для луче­вого поражения и наблюдаются при действии некоторых токсических факторов. В значительной мере изменения нервных структур вторичны, т. е. являются следствием изменений в других системах в ходе развития лучевого поражения (токсемия, инфекционный процесс).

Уже отмечалась способность нервных клеток отвечать функциональ­ными реакциями на воздействие даже малых доз облучения. К этому следует добавить, что на функции нервной системы могут повлиять и обильная патологическая афферентная импульсация из поврежденных радиочувствительных тканей, и токсические влияния продуктов клеточ­ного распада, эндотоксинов, проникающих во внутреннюю среду из кишки, и т. п.

В ходе лучевой болезни выявляются изменения биоэлектрической ак­тивности коры головного мозга, в эксперименте регистрируются рас­стройства условнорефлекторной деятельности, особенно резко выражен­ные в терминальном периоде.

Расстройства нервной системы могут проявляться и непосредствен­ными клиническими симптомами, как, например, при остром пострадиа­ционном ЦНС-синдроме, при первичной реакции на облучение, которые будут рассмотрены позднее, и нарушениями регуляции вегетативных функций, процессов восстановления поврежденных тканей.

После облучения в дозах порядка нескольких десятков Грей наруше­ния функций центральной нервной системы лежат в основе развития це­ребральных нарушений, определяющих клиническую картину поражения организма.

Таким образом, хотя радиочувствительность нейронов и невысока, нарушения функций нервной системы могут иметь существенное значе­ние для развития лучевого поражения.

37В

I лаьа 11, и»мг\1 \jrra, DDioDiDnnju^wc i ivjrrtmcrmn i irei n^tn илл иогшипл м г "H1""^1^1"...'"":."""' ...".'tn