Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГЛАВА2.doc
Скачиваний:
4
Добавлен:
12.11.2019
Размер:
7.4 Mб
Скачать

IV. Содержание отчета.

Отчет по работе составляется в произвольной форме и должен содержать:

  1. Краткое описание работы.

  2. Электрические схемы.

  3. Расчетные формулы.

  4. Экспериментальные данные и результаты расчетов (в таблице).

  5. График cos = f (L)..

  6. Выводы.

V. Контрольные вопросы.

1.Что называется действующим или эффективным значением тока?

2.Что называется действующим или эффективным значением напряжения?

3.Дайте определение активного, индуктивного, емкостного и полного сопротивлений цепи переменного тока.

4.Сформулируйте закон Ома для полной цепи переменного тока.

5.Запишите выражение для мгновенной и средней мощности цепи переменного тока.

6.Что такое коэффициент мощности и от чего он зависит?

7. Почему в выражении для мощности в случае переменного тока появляется ?

8. Почему между током и напряжением в цепи переменного тока появляется сдвиг по фазе.

9. Конденсатор емкостью 20 мкФ и резистор, сопротивление которого 150 Ом, включены последовательно в цепь переменного тока частотой 50 Гц. Какую часть напряжения, приложенного к этой цепи, составляют падения напряжения на конденсаторе и резисторе?

10. катушка с активным сопротивлением 10 Ом и некоторой индуктивностью включена в цепь переменного тока с напряжением 127 В и частотой 50 Гц. Найдите индуктивность катушки, если известно, что катушка поглощает мощность 400 Вт и сдвиг фаз между током и напряжением 600 .

11. В цепь переменного тока напряжением U=220В включены последовательно емкость С, сопротивление R и индуктивность L. Найдите падение напряжения UR на сопротивление, если известно, что падение напряжения на конденсаторе UС =2 UR, на индуктивности UL=3 UR.

12. Активное сопротивление R и индуктивность L соединены параллельно и включены в цепь переменного тока напряжением 127 В и частотой 50 Гц. Найдите сопротивления R и индуктивность L, если известно, что цепь поглощает мощность 404 Вт и сдвиг по фаз между током и напряжением 600 .

2.14. Изучение работы электронно-лучевого осциллографа.

Цель работы: изучить устройство электронно-лучевого осциллографа, овладеть навыками осциллографических измерений.

I. Теоретическое введение.

Осциллограф в основном применяется для следующих целей:

  1. Для исследования напряжения или тока быстропеременных процессов в зависимости от времени (форма кривой) или в зависи­мости от напряжения или тока другого процесса.

  2. Для сравнения амплитуд двух напряжений или двух токов.

  3. Для сравнения фаз двух токов, двух напряжений или тока и напряжения.

  4. Для определения частот колебаний, измерения малых про­межутков времени.

Электронный осциллограф может быть также использован для ис­следования изменения любой физи­ческой величины, если эти изменения могут быть преобразованы в изменения напряжения в электрической цепи. На­пример, используя микрофон, можно преобразовать колебания давления воздуха при распространении в нем звука в механические колебания ди­афрагмы, колебания диафрагмы вызывают колебательное движение свя­занной с ней катушки в поле постоянного магнита, а это движение ка­тушки сопровождается возникновением переменного напряжения на ее концах. Присоединив выводы микрофона к входу электронного осцилло­графа, можно исследовать звуковые колебания.

Осциллографы различают:

а) по назначению;

б) количеству одновременно исследуемых сигналов;

в) ширине полосы пропускания;

г) точности измерений;

д) характеру исследуемого сигнала и т.д.

По назначению осциллографы делят на: осциллографы универсальные (С1); осциллографы скоростные, работающие на частотах 100 МГц - 1 ГГц (С7); осциллографы запоминающие (С8); осциллографы специальные (С9).

По количеству одновременно исследуемых сигналов на – однолучевые, двухлучевые, многолучевые (многоканальные).

По ширине полосы пропускания ЭЛО делятся на низкочастотные (fверхн = 1 МГц), на среднечастотные (fверхн = 10 МГц), скоростные. Полоса пропускания дается при спаде АЧХ в 3 дБ.

По точности измерения временных интервалов и амплитуд осциллографы делятся на 4 класса точности (табл.1).

Таблица 1

Класс точности

Изм. амплит.

Изм. Врем.

интервалов

Нелин. АЧХ

Нелинейность

развертки

1

 3 %

 3 %

 3 %

 3 %

2

 5 %

 5 %

 5 %

 5 %

3

 10 %

 10 %

 10 %

 10 %

4

нет

нет

 20 %

 20 %

По характеру исследуемых сигналов различают ЭЛО для исследования периодических сигналов, ЭЛО для исследования апериодических сигналов.

Основная структурная схема ЭЛО изображена на рис.1 и состоит из следующих узлов: электронно-лучевой трубки; канала вертикального отклонения (канала У); канала горизонтального отклонения (канала Х); двух калибраторов 3,5 (амплитуды и длительности), блока питания и блока временной развертки. От блока питания напряжение подается на электроды электронно-лучевой трубки, электронные схемы блока временной развертки и усилителей го­ризонтального и вертикального отклонения луча.

С помощью переключателей S устанавливают различные режимы работы прибора.

Электронно-лучевая трубка (ЭЛТ) служит для преобразования исследуемого сигнала в видимое изображение - осциллограмму.

Канал вертикального отклонения обеспечивает регулировку (усиление и ослабление) входного напряжения до уровня, необходимого для отклонения луча по вертикальной оси ЭЛТ. Канал состоит из входного устройства 1 и широкополосного усилителя напряжения 2.

Исследуемый сигнал поступает на входное устройство, в котором он ослабляется и задерживается для того, чтобы напряжение развертки поступило на горизонтально отклоняющие пластины ЭЛТ с некоторым опережением, что позволит наблюдать на экране начало процесса. Усилитель канала обеспечивает необходимое усиление исследуемого сигнала и преобразует его из однофазного в два противофазных напряжения, которые подаются на вертикально отклоняющие пластины.

Канал горизонтального отклонения вырабатывает развертывающее напряжение, усиливает его, а также синхронизирует в различных режимах работы. Канал состоит из входного устройства 6, блока синхронизации 7, генератора развертки 8 и усилителя горизонтального отклонения 9.

Синхронизация колебаний генератора развертки может осуществляться как исследуемым сигналом, так и от внешнего источника, подключаемого к гнезду "Вход Х" (при этом переключатель S3 ставят в положение 2).

Развертывающим напряжением может быть как пилообразное напряжение генератора развертки, так и любое другое, поданное на гнездо "Вход Х" ( в последнем случае переключатели S3, S4, S5 ставят в положение 2).

Входное устройство и усилитель напряжения канала Х выполняют функции, аналогичные функциям соответствующих узлов канала вертикального отклонения. Блок синхронизации служит для усиления синхронизирующего напряжения и изменения его полярности в том случае, когда оно не совпадает с полярностью, необходимой для запуска генератора развертки.

Калибраторы ЭЛО служат для измерения амплитуды и длительности исследуемого сигнала. Канал управления яркостью 4 (канал Z) предназначен для получения масштабных меток, которые используются при измерении временных параметров сигнала.

Электронно-лучевая трубка.

Е сли в аноде вакуумного триода сделать отверстие, то часть электро­нов, испущенных катодом, пролетит сквозь это отверстие. Их движением далее можно управлять с помощью электрических и магнитных полей. Прибор, в котором используется пу­чок электронов, свободно летящих в пространстве за анодом, называется электронно-лучевой трубкой.

Источником электронов в элек­тронно-лучевой трубке (рис.2) служит ка­тод 1, нагреваемый нитью накала. Электроны разгоняются элект­рическим полем между катодом и двумя анодами 2. Изменяя на­пряжение на аноде 2, можно фоку­сировать электронный пучок 5, т. е. изменять площадь поперечного сече­ния электронного пучка на экране. Изменяя напряжение между катодом 1 и управляющим электродом 2, можно изменять интенсивность электронного пучка (яркость пятна на эк­ране). Понижение потенциала управляющего электрода относительно потенциала катода препятствует прохождению электронов от катода к аноду и вызывает ослабление интенсивности электронного пучка 5.

Внутренняя поверхность стеклян­ного баллона электронно-лучевой трубки напротив анода, покрытая тонким слоем кристаллов, представ­ляет экран 6. Поток электронов, про­летевших через отверстие в аноде электронно-лучевой трубки – элект­ронный пучок,– при ударе вызывает свечение кристаллов, и сквозь стекло экрана видно светящееся пятно в месте по­падания электронов на экран.

С помощью электрических или магнитных полей можно управлять движением электронов на их пути и заставить электронный пучок «ри­совать» любую картину на экране.

В трубке электронно-лучевого ос­циллографа между анодом и экра­ном находятся две пары параллель­ных металлических пластин 3 и 4. Эти пластины называются управляю­щими электродами. Одна пара плас­тин расположена вертикально, а дру­гая горизонтально. Если подать на­пряжение на вертикально располо­женные пластины, то электронный пучок будет отклоняться в горизон­тальном направлении, подача напря­жения на горизонтальные пластины вызывает вертикальное смещение пучка.

Если между горизонтально расположенными отклоняющими пластина­ми 3 подано напряжение U, то, пролетая между ними, электрон движет­ся с ускорением

(1)

где е — заряд электрона; d — расстояние между пластинами.

Через интервал времени , в течение которого электрон движется между отклоняющими пластинами длиной l, проекция скорости элек­трона υy установится равной:

. (2)

За время t движения от пластин до экрана ( ) электрон смеща­ется в вертикальном направлении на расстояние

, (3)

где L — расстояние от пластин до экрана.

Коэффициент пропорциональности К в последнем выражении являет­ся для данного осциллографа постоянной величиной. Он называется чув­ствительностью пары отклоняющих пластин и выражается в миллиметрах на вольт (мм/В).

Так как отклонение электронного луча y пропорционально напряже­нию U, приложенному к пластинам, то при известной чувствительности осциллограф может быть использован как вольтметр для измерения как постоянных, так и быстроизменяющихся напряжений.

Аналогично при подаче напряжения на вертикально расположенные пластины 4 луч смещается в горизонтальной плоскости, причем смещение x пропорционально приложенному напряжению.

Развертка

Для исследования быстропеременных электрических процессов в осциллографе осуществляется раз­вертка – равномерное перемещение электронного пучка по горизонтали с быстрым отбросом назад. Для того чтобы пучок перемещался вдоль горизонтальной оси с постоянной ско­ростью, напряжение на вертикально отклоняющих пластинах должно из­меняться линейно по времени, а для быстрого возвращения пучка в ис­ходное положение напряжение долж­но очень быстро падать до нуля. Такое напряжение носит название пилообразного.

Рассмотрим принцип наблюдения процессов, изменяющихся во времени, на экране.

П редположим, что в момент t0 к вертикаль­ным пластинам приложено напряжение, линейно изменяющееся во времени, т. е. . Тогда пятно будет двигаться по экрану с постоянной скоростью ( ) в горизон­тальном направлении. Если в тот же момент t0 к горизонтальным пластинам подключить исследуемое переменное напряжение U(t), то на экране получится кривая зависимости U от времени в интер­вале времени от t0 до tx — момент времени, когда пятно достигает края экрана. Если U(t) — периодическая функция с периодом , то, заставив луч в момент tx мгновенно возвра­титься в исходное положение А (рис. 3) и повторив развертку с по­стоянной скоростью до точки В, мы увидим на экране второй период изменения величины U(t).

Т аким образом, смещая луч от точки А до точки В вдоль гори­зонтальной оси с постоянной скоростью, а потом мгновенно возвра­щая его от В к А и повторяя такую развертку многократно, можно увидеть на экране неподвижную картину изменения U(t) в течение одного периода, если время движения пятна по экрану от А до В ( ) равно периоду изменения U(t). Если , где п — целое число, то на экране мы получим п периодов изменения величины U(t).

После всего сказанного нетрудно видеть, что график изменения во времени напряжения развертки должен иметь вид, изображенный на рис.4, то есть быть пилообразным. Для получения такого напряжения в осциллографе смонтирован генератор пилообраз­ного напряжения.

Синхронизация.

Для получения неподвижного изображения на экране необходимо, чтобы в периоде генератора развертки укладывалось целое число перио­дов исследуемого процесса (Тр=пТ), в противном случае картина не будет неподвижна. Поэтому иссле­дуемый сигнал с данным перио­дом То подают на осциллограф и, меняя период развертки Тр, подбирают его таким, что . Однако вследствие возможной нестабильности частоты генератора развертки нельзя ручаться за сохранение указанного равенства и в дальнейшем. Поэтому колебания генератора развертки син­хронизируются с другими, более стабильными колебаниями.

При исследовании процессов высокой частоты получить без синхронизации устойчивое изображение процесса очень трудно.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]