Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
SPRS_Fizichn_ta_kolloyid_khimiya.doc
Скачиваний:
9
Добавлен:
11.11.2019
Размер:
2.5 Mб
Скачать

2 Години.

Дисципліна : Медична хімія (ФІЗИЧНА ТА КОЛОЇДНА ХІМІЯ )

Тема : Значення високомолекулярних сполук (ВМС) у

медицині та фармації.

Викладач : Рибальченко Віталій Валентинович

Курс, група : І курс , групи 11, 12, 13. Спеціальність : 5.12010102 «сестринська справа»

І. Актуальність теми : Медиків особливо цікавлять високомолекулярні сполуки людського організму. До них відносяться перш за все білки і їх похідні - нуклеопротєїди, глюкопротєїди, ліпопротєїди і ін., а також глікоген. Ці сполуки є основним будівельним матеріалом для протоплазми і ядерної речовини кліток і, крім того, в значній кількості містяться в багатьох біологічних рідинах. Значення цих сполук для процесів життєдіяльності організмів надзвичайно велике.

ІІ. Навчальні цілі :

Знати: 1. Полімери медичного використання

2. Вимоги до медичних полімерів.

Вміти: 1. Класифікувати полімери за сферами використання

2. Приводити приклади використання полімерів в медицині.

ІІІ. Матеріали доаудиторної та аудиторної самостійної роботи :

ІІІ.а. Базові знання , вміння, навички, необхідні для вивчення теми . Для вивчення теми

необхідно:

Знати

Вміти

З дисципліни

Глобулярна та фібрилярна структура білків.

Порівнювати розчинність ВМС

Фізична та колоїдна хімія

Набухання та розчинення полімерів. Механізм набухання.

Пояснювати механізм набухання (набрякання)

Фізична та колоїдна хімія

Ізоелекгричний стан білка.

Пояснювати методи визначення ізоелектричного стану білку.

Фізична та колоїдна хімія

ІІІ.б. Рекомендована література :

Основна: В.Гомонай, Фізична та колоїдна хімія. Ужгород 2006р. с. 434-471.

Додаткова: Ю.А. Ершов – Общая химия – Москва 2000г. С. 526-544.

- Лекція № 9.

ІІІ.в. Основні етапи роботи :

1 етап - опрацювання рекомендованої літератури .

Завдання

Зверніть увагу

1.Прочитати статтю «Характеристика високомолекулярних сполук» .

(З рекомендованої літератури або з додатка № 1.).

1. На полімери медичного значення

2. На класифікацію медичних полімерів та сфери їх використання

3. На вимоги до медичних полімерів.

1.Прочитати статтю «Використання ВМС у медичній практиці» .

(З рекомендованої літератури або з додатка № 1.).

1. На полімери в стоматології

2. На використання полімерних матеріалів у офтальмології.

3. На використання полімерних кровозамінників

2 етап - виконання завдань для самоконтролю :

Завдання

Зверніть увагу

1.Прочитавши статтю «Характеристика високомолекулярних сполук» зробіть стислий конспект

(З рекомендованої літератури або з додатка № 1.).

1. На полімери медичного значення

2. На класифікацію медичних полімерів та сфери їх використання

3. На вимоги до медичних полімерів.

1.Прочитавши статтю «Використання ВМС у медичній практиці» випишіть приклади використання.

(З рекомендованої літератури або з додатка № 1.).

1. На полімери в стоматології

2. На використання полімерних матеріалів у офтальмології.

3. На використання полімерних кровозамінників

3 етап - закріплення знань та навичок. Після вивчення теми необхідно :

Знати

Вміти

1. Полімери медичного використання

2. Вимоги до медичних полімерів.

1. Класифікувати полімери за сферами використання

2. Приводити приклади використання полімерів в медицині.

ІV. Додаткові завдання ( матеріали позааудиторної роботи ):

Використання ВМС в фармакології. ( з додатка № 2).

( прочитайте статтю).

Додатки до СПРС № 8 :

ДОДАТОК № 1.

Характеристика високомолекулярних сполук.

Полімери медичного призначення.

Для медичних цілей використовують полімерні матеріали загальтехнічного призначення, а також спеціальні полімерні матеріали медичного призначення. З перших виготовляють будівельне й санітарно-технічне устаткування лікувальних установ, посуд, предмети догляду за пацієнтами, деталі різних приладів, дослідницької й лікувальної апаратур, інструментів, посуду для аналітичних лабораторій й ін. Застосування полімерних матеріалів замість традиційних матеріалів (металів, скла) обумовлено їх кращими технологічними властивостями, комплексом фізико -механічних характеристик, можливістю переробки у вироби масового вжитку й одноразового застосування. Крім загальтехнічних, до цих полімерних матеріалів пред'являються додаткові санітарно-гігієнічні вимоги - мінімальне виділення в навколишнє середовище газоподібних продуктів, що не перевищує ГДК; нерозчинність у миючих розчинах; можливість стерилізації дезінфікуючими розчинами, газами, УФ-опроміненням, г-випромінюванням.

Найбільше широко застосовуються полімерні матеріали на основі полівінілхлориду, сополімерів стиролу, поліпропілену, поліметилметакрилату, поліуретанів, фенолформальдегідних смол.

Спеціальні полімерні матеріали медичного призначення призначені для безпосереднього контакту з живим організмом - в ендопротезах і матеріалах для відбудовчої хірургії, у матеріалах і виробах для відбору крові, у вигляді інструментів для внутріорганних досліджень, апаратури, що заміняє функції органів, компонентів терапевтичних і діагностичних засобів. Основу таких полімерних матеріалів становлять синтетичні й природні високомолекулярні сполуки, які не мають на живий організм шкідливого впливу. За характером взаємовпливу на організм полімерні матеріали поділяють на біоінертні, біосумісні та біоактивні.

Класифікація медичних полімерів та сфери їх використання.

Біоінертні полімерні матеріали: поліетилен, поліпропілен, фторопласт, силікони, поліметилметакрилат практично не змінюють своїх властивостей під впливом середовищ живого організму. У вигляді готових виробів або матеріалів їх використовують для створення штучних судин (поліетилентерефталат, поліпропілен, фторопласт), клапанів серця (силікон, фторопласт, поліпропілен, поліетилентерефталат), кришталиків очей (поліметилметакрилат), частин ендопротезів суглобів (поліаміди, фторопласт), як штучні сухожилля, м'язові зв'язки (поліпропілен, поліетилентерефталат), деталей апаратів штучної нирки, штучного серця (поліетилен, поліпропілен, поліакрилати, силікони, ефіри целюлози).

Біосумісні полімерні матеріали здатні поступово піддаватися біодеструкції або розчиненню в біологічних середовищах, що дозволяє найбільш сприятливо здійснювати відбудовні хірургічні операції, використовуючи регенераторні функції організму. Матеріали сополімерів вінілпіролідона, акриламіду, акрилатів, поліамідів у вигляді комбінованих протезів, сіток, плівок, листових матеріалів, піноматеріалів, клейових композицій, що розсмоктуються, застосовують для тимчасового заміщення тканин при резекціях, зміцненні стінок органів, закриття ран внутрішніх органів, заповнення післяопераційних порожнин. У травматології біосумісні полімерні матеріали із співполімерів вінілпіролідона й метилметакрилату застосовують для заміщення дефектів кісткової тканини, у вигляді різних сполучних елементів, для склеювання кісткових уламків. У серцево-судинній хірургії аналогічні полімерні матеріали використають при протезуванні судин, зміцненні серцевої стінки.

Біоактивні полімерні матеріали можуть мати фізіологічну активність завдяки лікарським препаратам, що утримуються в них у вигляді компонента. Застосовують готові лікарські форми у вигляді композицій, де високомолекулярні з'єднання або відіграють роль основи-носія (очні лікарські плівки з різними препаратами - сульфапіридазином, пілокарпіном, тринітролонг, динітросорбілонг), або мають власну фізіологічну активність макромолекул - полімерні ліки, антитромбогені полімерні матеріали, штучні плазмо- і кровозамінники, ентеро- і гемосорбенти. Для біосумісних і біоактивних полімерних матеріалів використовують високомолекулярні сполуки на основі N-вінілпіролідона, акриламіду, деяких акрилатів, похідні целюлози.

Вимоги до медичних полімерів.

Добре відомо, що зовсім чистих речовин практично не існує. Те ж, але в набагато більшій мірі відноситься й до полімерів. Полімери, які випускаються промисловістю, містять велику кількість різних низькомолекулярних речовин (залишки мономерів і каталізаторів полімеризації, барвники, стабілізатори, наповнювачі, які в живому організмі здатні вимиватися з полімерів і здійснювати негативний вплив на цей організм. Отже, вміст таких домішок повинен бути зведений до мінімуму, що за токсикологічними оцінками, наприклад для кремнійорганічних полімерів, повинен становити 10-5 - 10-6 %. А це вже наближається до чистоти матеріалів для мікроелектроніки.

Недостатньо лише одержати чистий полімер, його необхідно ще переробити у виріб і простерилізувати. Часто застосовуваний для стерилізації окис етилену не тільки сорбується полімерами, але й може з деякими з них реагувати, істотно змінюючи властивості їхньої поверхні.

Імплантовані в організм на тривалий термін полімери повинні мати необхідний комплекс хімічних, фізичних і механічних властивостей для забезпечення необхідних функцій і зберігати ці властивості протягом усього часу перебування в організмі. Навпроти, якщо мова йде про тимчасовий імплантат, наприклад хірургічні нитки, то матеріал повинен повністю розкладатися в живому організмі, виконавши свої функції, без виділення токсичних продуктів.

Звичайна взаємодія полімерних речовин з фізіологічним середовищем супроводжується або розчиненням полімеру без зміни його молекулярної маси, або руйнуванням полімеру шляхом гідролізу основних зв'язків макромолекули або шляхом фагоцитарного руйнування (фагоцитоз - захисна клітинна реакція на сторонні предмети, що полягає в активному захоплюванні клітинами сторонніх часток з наступним їхнім внутрішньоклітинним перетравлюванням). При цьому біодеструкції піддаються навіть полімери вкрай інертні з хімічної точки зору. Наприклад, нейлон, що спочатку використовувався для виготовлення протезів аорти, при імплантації в кровоток втрачає свою міцність на протязі 3 років.

Руйнування полімерного імплантанта в живому організмі може бути причиною ускладнень, які виникають не відразу, а згодом, навіть при дотриманні всіх необхідних правил оперування й за умови відносної хімічної інертності самого полімеру. Якщо продукти біодеградації полімерів (а вони звичайно більш токсичні, чим вихідний полімерний матеріал) створюють дратівну дію, їхня присутність у зоні імплантації буде підтримувати вогнище хронічного асептичного запалення. Говорячи про вимоги, висунуті до полімерів медичного призначення, звичайно згадують і необхідність відсутності в них канцерогенної, мутагенної й іншої токсичної дій, хоча зараз ще не ясно, які саме властивості синтетичних полімерів визначають ці властивості.

Використання ВМС у медичній практиці.

Полімери у стоматології.

Із всіх галузей медицини найбільше «полімероємна» - стоматологія. Ефективність стоматологічної допомоги багато в чому залежить від якості застосовуваних матеріалів, у тому числі й полімерних. У стоматології синтетичні полімери використають у якості пломбувальних матеріалів, захисних покриттів, для виготовлення зубних протезів. Досить поширений, так званий, склоіономерний цемент для пломбування передніх зубів і тріщин в емалі. Він являє собою суміш поліакрилової кислоти зі склом спеціальних складів, виготовленим з подрібненої суміші кварцу, глинозему, кріоліту, плавикового шпату й фосфату амонію або із суміші кварцу, глинозему й карбонату кальцію. Частки скла, вплавлені в полімерну матрицю, утворять композицію більше міцну, чим портландцемент.

Поступово в стоматологічних клініках світу з'являється нова група полімерних матеріалів, які тверднуть без застосування хімічних ініціаторів, які часто не відповідають токсикологічним вимогам. У нових композиціях тверднення здійснюють фотохімічно під дією ультрафіолетового випромінювання кварцової лампи.

Використання полімерних матеріалів у офтальмології.

Важливим напрямком впровадження полімерних матеріалів у медицину є їхнє застосування в офтальмології. Використання в очній хірургії полімерних клеїв, у першу чергу на основі ціанакрилатів, сприяло здійсненню операцій, раніше технічно дуже важких або навіть нездійсненних через складність накладання дрібних швів. Не меншу популярність отримали контактні лінзи й штучні кришталики. Тверді лінзи, виготовлені з поліметилметакрилату, пацієнти носять обмежений час і знімають перед сном. Однак внаслідок твердості, що викликає відчуття дискомфорту, і непроникності поліметилметакрилату для кисню, що в деяких випадках приводило до розвитку кисневого голодування рогівки ока й пов'язаного з ним набряку, багато пацієнтів не можуть адаптуватися до таких лінз. В останні роки для виготовлення твердих лінз стали застосовувати ацетобутират целюлози, що добре змочується слізною рідиною й майже в сто разів більше проникний для кисню, чим поліметилметакрилат. Але й у цьому випадку потрібне періодичне знімання таких лінз.

Тому особливий інтерес представляють гідрофільні, проникні для кисню м'які контактні лінзи для тривалого носіння. Як матеріал для виготовлення таких лінз найбільше поширення одержав гідрогель на основі поліоксіетилметакрилата, що володіє хорошими оптичними й механічними властивостями й зберігає дані властивості в широкому інтервалі температур і значень рН. Внаслідок високого змісту води в гідрогелях (до 80%) вони добре сполучаються із тканинами ока, не викликаючи подразнення. Зростання виробництва м'яких контактних лінз значно випереджає зростання виробництва лінз із поліметилметакрилату. Так, у США в 1979 р. контактними лінзами користувалися 10 мільйонів чоловік, приблизно половина з них - м'якими лінзами, а в 1982 р. ці цифри склали відповідно 14 й 10 мільйонів чоловік.

До останніх досягнень в області офтальмології варто віднести створення м'яких лінз для корекції астигматизму й лінз для корекції далекозорості. Найбільш перспективними з них є біфокальні лінзи, тому що тільки в США біфокальними окулярами користуються близько 48 мільйонів чоловік. Уже створені косметичні забарвлені контактні лінзи, а також лінзи, що володіють лікувальною дією й використовуються при пересадках рогівки ока, кон'юнктивітах, вірусних захворюваннях рогівки.

Важливою областю використання полімерів в офтальмології стало виготовлення поліметилметакрилатних штучних кришталиків, які імплантуються пацієнтам після видалення власних кришталиків, уражених катарактою. Такі кришталики майже повністю відновлюють нормальний зір, причому пацієнти обходяться без допомоги окулярів або контактних лінз. Тільки в США в 1985-1987 р. число імплантацій штучного кришталика складало близько 700 тисяч у рік.

Використання полімерних кровозамінників

Відомо, що при гострій крововтраті (порядку 20-30 % циркулюючої крові) досить часті випадки так званого геморагічного шоку з летальним результатом. Найбільш результативний засіб у таких випадках - компенсація крові ззовні. Разом з тим оскільки шок викликається втратою саме обсягу крові, тобто кількісним фактором, то вивести організм із коматозного стану можна й застосуванням інших агентів, наприклад, ізотонічного розчину хлориду натрію. Однак час втримання такого замінника в кровоносних судинах невеликий. Час циркуляції в крові високомолекулярних сполук, природно, набагато більший, що й стало основою для їхнього застосування як плазмозамінників. Призначені для заміни плазми крові, вони мають протишокову дію, підвищують артеріальний тиск при гострій крововтраті, утримують рідину в кров'яному руслі, а іноді сприяють виведенню токсичних речовин. З фармакологічної точки зору для всіх плазмозамінників основним їхнім компонентом є водорозчинний полімер. Як полімери найбільше поширення одержали частково гідролізований декстран (препарати «Поліглюкін» й «Реополіглюкін»), полівініловий спирт («Полідез»), полі-1М-вініл-піролідон («Гемодез») і деякі інші.

Полімерні плазмозамінники є двох типів: протишокові й дезінтоксикаційні. Перші призначені для тривалого циркулювання в крові (порядку 1-2 діб, протягом яких відбувається фізіологічне відновлення крововтрати) і тому мають досить високу молекулярну масу. Плазмозамінники другого типу володіють більш яскраво вираженою лікарською дією; вони здатні взаємодіяти з токсинами й виводити ці токсини з організму. Отже, основними вимогами до цих полімерів повинні бути здатність реагувати з токсинами й відносно невисока молекулярна маса. У найбільш повній мері таким вимогам задовольняє полівінілпіролідон з молекулярною масою 12 - 27 тисяч. До 80 % цього препарату виводиться через нирки протягом перших чотирьох годин після вливання. Із-за цієї обставини цей препарат знаходить широке застосування при лікуванні гострих токсичних інфекцій, отруєнь.

ДОДАТОК № 2

Використання ВМС в фармакології.

Протипухлинний клей медичний "ЛЕВКІН"

Вченими НАН України разом із провідними онкологами АМН України розроблений протипухлинний препарат "ЛЕВКІН", що застосовується для заповнення дефектів кісткових і м'яких тканин після видалення пухлин .

Відомо, що пухлини - це процес тісно пов'язаний з імунодефіцитом. Препарат "ЛЕВКІН" містить у своєму складі імуномодулятор, що має можливість довгостроково надходити в організм хворого після операції й тим самим запобігати пухлинний ріст.

Клей "ЛЕВКІН" являє собою біосумісну біодеструктуючу композицію на основі поліуретанів. Його біосумісність обумовлена близькістю хімічного складу уретанової групи - СО-NH - поліуретану до пептидной групи білків. Пориста структура затверділої композиції з лікарською речовиною у своєму складі, приводить до стимуляції процесів регенірації прилеглих тканин за рахунок місцевої активації клітинної ланки імунної системи й процесів біодеструкції. У процесі біодеструкції препарат поступово виводиться з організму, не кумулюючись у печінці й нирках.

Клей "ЛЕВКІН" пройшов процедуру реєстрації й внесений у Державний реєстр медичної техніки й виробів медичного призначення України й дозволений для використання в медичній практиці (Свідоцтво про держреєстрацію № 3720/2005 від 23.02.05).

Операції проводяться в спеціалізованій клініці НДІ онкології АМН України. При операції онкохворих у загальнохірургічних клініках без використання препарату "ЛЕВКИН" рецидиви пухлин виникають в 70 - 80 % пацієнтів. При операціях в онкологічних клініках із застосуванням нашого препарату забезпечується 100 % безрецидивний перебіг хвороби в оперованих уперше пацієнтів. Це підтверджується даними за спостереженням більш ніж 300 хворими протягом 5 - 15 років.

Препарат "ЛЕВКІН" випускається й проходить контроль в аккредитованной Укрметртестстандартом лабораторії (Атестат акредитації №ПТ - 0350 /03 від 21.05.03 ). Упакування клея складається з 3 компонентів: поліуретанової основи, імуномодулятора й прискорювача.

54

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]