Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Практикум по теории статистики.doc
Скачиваний:
60
Добавлен:
10.11.2019
Размер:
8.64 Mб
Скачать

Шкала Чеддока

Величина показателя тесноты связи по абсолютной величине

0,1 -

0,3

0,3 -

0,5

0,5 -

0,7

0,7 -

0,9

0,9 -

0,99

Характеристика связи

Сла

бая

Умерен

ная

Замет

ная

Высокая (тесная)

Весьма высокая (очень тесная)

Корреляционно-регрессионный анализ. Корреляционной связью между двумя признаками называется такая связь, при которой изменение среднего значения факторного признака вызывает изменение среднего значения результативного.

Конечная цель статистического изучения корреляционной связи состоит в получении статистической модели этой зависимости в форме уравнения регрессии или уравнения связи. Решение этой задачи осуществляется в следующей последовательности.

Осуществляется логический анализ сущности изучаемого явления и причинно-следственных связей, т.е. устанавливается результативный признак ( ) и фактор (или факторы) его изменения (х12,… ). Связь двух признаков является парной корреляцией, а нескольких - множественной.

Проверка требований, предъявляемых к факторным и результативным признакам:

- однородность распределения, т.е. коэффициенты вариации не должны превышать 33 %: Vу , ;

- соответствие нормальному закону распределения, - чаще всего используется правило “трех сигм”.

Если и , то с вероятностью 0,997 можно утверждать, что распределение соответствующих признаков (ре-зультативного и факторного) соответствуют нормальному закону распределения.

независимость по объектам наблюдения. Если рассматривается статическое распределение или ряды распределения, то это требование подтверждается путем логического анализа, т.е. apriori. В то же время при построении регрессионных моделей по рядам динамики дополнительно необходимо проверять гипотезы об отсутствии автокорреляции и тенденции в рядах динами (стр.325-326. данного раздела);

отсутствие мультиколлинеарности между факторными признаками (при множественной корреляции), т.е. и ( ) не должны быть связаны между собой ни функциональной (мультипликативной или аддитивной), ни тесной корреляционной связью, т.е. или , k є ; или ≤ 0,8.

все факторные и результативные признаки должны иметь количественное выражение и взаимно соответствовать друг другу в пространстве, т.е. по объектам наблюдения, и по времени.

3. Исключение из массива первичной информации всех резко-выделяющихся (аномальных) единиц признаков-факторов и форми-рование нового массива для последующего анализа.

4. Определение формы и направления связи. В случае парных зависимостей применяются: содержательный анализ, графический метод, метод аналитических группировок и построение корреляцион-ных таблиц.

На основе данных аналитической группировки строится график эмпирической линии связи, вид которой не только позволяет судить о возможном наличии связи, но и дает некоторое представление о ее форме.

При построении корреляционных таблиц строится таблица взаимной сопряженности факторного и результативного признака, и по распределению частот можно предположить форму связи между ними (тема 2).

Реализация графического метода предполагает построение корреляционного поля, т.е. множества точек с координатами ( , , , - номер объекта наблюдения), в прямоугольной системе координат. По расположению точек (их плотности и направлению) можно судить о возможной форме связи между признаками.

При множественных зависимостях форма связи определяется путем содержательного анализа или по соотношению формальных критериев аппроксимации: из нескольких форм связи (линейная, степенная, логарифмическая и т.д.) выбирают тот вариант, для которого выполняется следующее соотношение критериев:

- - критерий метода наименьших квадратов;

- F –критерий – критерий Фишера-Снедскора;

- R2 - максимальное значение множественного коэффициента детерминации.

5. Построение модели связи. На этом этапе определяются параметры уравнения связи по методу наименьших квадратов; - в результате чего строится система нормальных уравнений, решение которое и дает значение необходимых параметров (табл. 10.3).

6. Оценка тесноты связи. Для парных линейных зависимостей рассчитываются: линейный или парный коэффициент корреляции (rху), коэффициент детерминации (dху) и коэффициент эластичности (Кэл.) по следующим формулам: ; = ; Кэл.= .

Для нелинейных зависимостей, - теоретическое корреляционное отношение ( ), коэффициент детерминации ( ) и коэффициент эластичности (К эл.).

; = ; Кэл.= ;

где - первая производная по уравнению связи.

7. Проверка статистической достоверности или существенности (значимости) показателей тесноты связи, уравнения связи и параметров уравнения связи.

Оценка достоверности парного коэффициента корреляции, корреляционного отношения и параметров линейного уравнения связи проводится на основе критерия Стьюдента:

- рассчитывается расчетное значение критерия ( ):

- для показателей тесноты связи: или ;

- для параметра уравнения связи: ,

где .

Таблица 10.3