Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Практикум по теории статистики.doc
Скачиваний:
68
Добавлен:
10.11.2019
Размер:
8.64 Mб
Скачать

Тема 8. Анализ тенденций развития Методические указания

Важной задачей статистики при анализе рядов динамики является определение основной тенденции развития.

Основными показателями, дающими представление о тенденции (тренде) развития явления во времени, являются цепные абсолютные приросты, цепные темпы роста и средние уровни.

Если расчет цепных показателей не позволил выявить тенденцию в ряду динамики, то переходят к обработке ряда с помощью методов, основанных на расчете средних уровней. К таким методам относятся: укрупнение интервалов времени, эмпирическое сглаживание (метод скользящей средней) и аналитическое выравнивание.

Укрупнение интервалов времени. Суть метода укрупнения интервалов времени в динамических рядах состоит в том, что берут данные за промежутки времени большей длительности по сравнению с первоначальными. Например, суточные данные заменяют пятидневными, декадными, месячными; месячные – квартальными, годовыми; годовые – трех-, четырех-, пятилетними и т.д. Укрупнение интервалов следует начинать с наименьшего возможного, т.е. интервала, объединяющего два уровня. В случае, если укрупнение по два уровня не дает возможности увидеть тенденцию, переходят к следующему возможному интервалу.

Сущность метода скользящей средней заключается в замене абсолютных уровней средними арифметическими за определенные периоды. При этом расчет средних ведется способом скольжения, т.е. постепенным исключением из принятого периода скольжения первого уровня и включением следующего.

Наиболее эффективным способом выявления основной тенденции развития является аналитическое выравнивание. При этом уровни ряда динамики выражаются в виде функции времени: . Аналитическое выравнивание может быть осуществлено по любому рациональному уравнению тренда. Выбор формы уравнения производится на основе анализа характера закономерностей динамики изучаемого явления. В таблице 8.1 приведены системы уравнений, которые необходимо решить для определения параметров уравнений, описывающих тенденции в рядах динамики.

Таблица 8.1

Уравнения, используемые при аналитическом выравнивании динамических рядов

Вид уравнения

Системы уравнений

Обычный способ рас-

чета параметров

Упрощенный способ расчета параметров

Прямая:

Парабола второго порядка:

Показательная кри-вая:

Гипербола:

При анализе рядов динамики в ряде случаев возникает необходимость в выявлении сезонных колебаний. Для определения сезонных колебаний обычно анализируются месячные и квартальные уровни ряда динамики за год или за несколько лет (в основном не менее 3-х лет). При выявлении и оценке сезонности рассчитывают специальные показатели – индексы сезонности ( ). Способы определения индексов сезонности различны и зависят от характера ряда динамики.

В рядах, не имеющих ярко выраженной тенденции развития (или она не наблюдается совсем), изучение сезонности основано на методе простой средней. Сущность этого метода заключается в том, что показатели сезонной волны определяются процентным отношением соответствующих средних месячных (квартальных уровней) к их общей средней за весь изучаемый период. Следовательно, при изучении помесячной сезонности сначала средние по месяцам и среднюю годовую исчисляют из данных за несколько лет (по простой арифметической), а затем эти средние по месяцам года ( )относят к средней годовой (к среднему месячному уровню для взятых лет) ( ), т.е. индекс сезонности исчисляется по формуле:

В рядах динамики, имеющих тенденцию развития, для определе-ния индексов сезонности вначале рассчитывают уровни, сглаженные методом скользящей средней или выравненные по определенной функции. Индексы сезонности вычисляются отношением фактического уровня за определенный квартал или месяц ( ) к выравненному за этот же период ( ). В результате при использовании, например, квар-тальных данных за три года получают двенадцать индексов сезонности:

.

Затем исчисляют средние индексы сезонности для одноименных кварталов за рассматриваемые годы:

.

В качестве аналитической формы сезонной волны иногда применяется уравнение следующего вида:

,

где k - порядок гармоники тригонометрического многочлена; t - время; - параметры ряда Фурье.

Это уравнение представляет собой ряд Фурье, где время (t) выражается в радиальной мере или в градусах:

Месяцы t

1

2

3

4

5

6

7

8

9

10

11

12

Радиальная мера

0

Градусы

0

30

60

90

120

150

180

210

240

270

300

330

Уровни, уi

у1

у2

у3

у4

у5

у6

у7

у8

у9

у10

у11

у12

Обычно при выравнивании по ряду Фурье рассчитывают не более четырех гармоник и затем уже определяют, с каким числом гармоник наилучшим образом отражается периодичность изменения уровней ряда.

Например, при k = 1 уравнение ряда Фурье будет иметь вид:

при k = 2 соответственно: .

Параметры уравнения находят по способу наименьших квадратов. При этом формулы, используемые для исчисления указанных выше параметров уравнения ряда Фурье имеют вид:

; ; .

Тесты

В чем суть приема “укрупнение периодов времени”?

1) определяются средние уровни с помощью математического урав-нения; 2) отыскиваются и сравниваются базисные темпы роста; 3) производится замена абсолютных данных средними арифметическими при постепенном исключении из рассмотрения первых уровней и включении последующих уровней; 4) производится замена абсолютных уровней данными.

2. Каким методом целесообразно сглаживать короткие динамические ряды?

1) с помощью скользящей средней; 2) путем укрупнения интервалов; 3) с помощью аналитического выравнивания; 4) исчислением средних по укрупненным интервалам.

3. Что является первым этапом аналитического выравнивания динамического ряда?

1) выявление характера динамики явления; 2) расчет выровненных уровней; 3) определение параметров уравнения по способу наименьших квадратов; 4) выбор математического выражения закономерности.

4. В каком случае упрощается система уравнений для нахождения параметров уравнения ?

1) принимается четное количествоо периодов; 2) принимается нечетное количество периодов; 3) начало отсчета времени переносится в середину рассматриваемого периода; 4) расчет выполняется табличным методом.

5. По какой формуле можно определить ?

1) ; 2); ; 3) 4) .

6. В чем суть приема эмпирического сглаживания?

1) определяются средние уровни с помощью математического урав-нения; 2) отыскиваются и сравниваются базисные темпы роста; 3) про-изводится замена абсолютных данных средними арифметическими при постепенном исключении из рассмотрения первых уровней и включении последующих уровней; 4) производится замена абсолютных данных средними арифметическими за укрупненные периоды.

7. В чем суть метода наименьших квадратов?

1) ; 2) ; 3) ; 4) .

8. Какой расчет необходимо сделать для определения параметров уравнения ?

1) ; 2) ; 3) .

9. Какую систему уравнений надо решить для определения параметров уравнения ?

1) ;2) ;3) ;4)