
- •Об истории возникновения предмета «Численные методы».
- •Решение нелинейных уравнений.
- •1.1. Метод половинного деления.
- •1.1. Метод простых итераций.
- •1.2. Геометрическая интерпретация метода простых итераций.
- •1.3. Приведение нелинейного уравнения к виду , допускающему сходящиеся итерации.
- •1.4. Метод Ньютона (метод касательных).
- •2. Решение систем нелинейных уравнений.
- •2.1. Метод простых итераций для решения систем нелинейных уравнений.
- •2.2. Метод Ньютона для решения систем нелинейных уравнений.
- •3. Решение систем линейных алгебраических уравнений.
- •3.1. Метод простых итераций для решения систем линейных алгебраических уравнений.
- •3.2. Метод Зейделя.
- •4. ИнтерполиРование функций
- •4.1. Интерполяционная формула Лагранжа.
- •4.2. Первая интерполяционная формула Ньютона.
- •4.3. Вторая интерполяционная формула Ньютона.
- •4.4. Применение интерполяционных многочленов для приближенного вычисления производных функции.
- •4.5. Численное интегрирование. Квадратурная формула Ньютона-Котеса.
- •4.7. Метод наименьших квадратов для обработки результатов экспериментов.
- •6. Решение обыкновенных дифференциальных уравнений и систем.
- •6.1. Метод Эйлера.
- •6.2. Метод Рунге-Кутта.
- •6.3. Метод Адамса.
- •6.4. Применение дифференциальных уравнений с малым параметром для решения нелинейных трансцендентных и алгебраических уравнений.
- •7. Краевые задачи для Дифференциальных Уравнений второго порядка.
- •7.1. Решение краевой задачи для обыкновенного дифференциального уравнения второго порядка методом конечных разностей.
- •7.2. Метод прогонки.
- •8. Численные методы решения краевых задач для дифференциальных уравнений в частных производных первого порядка.
- •8.1. Метод сеток для уравнения параболического типа.
- •8.2. Метод сеток для уравнений гиперболического типа.
- •9. Метод а.Н. Крылова для нахождения коэффициентов характеристическОго многочлена.
- •Литература
- •3.1. Основная литература
- •3.2. Дополнительная литература
4.7. Метод наименьших квадратов для обработки результатов экспериментов.
Данный метод относится к классу аппроксимационных методов. Идея метода состоит в том, чтобы по данным эксперимента построить приближенно функцию, отображающую зависимость ее от , в виде многочлена с тем расчетом, чтобы сумма квадратов отклонений построенной функции от экспериментальной в узловых точках была минимальна. Будем строить функцию в виде многочлена
.
Используем для построения результаты эксперимента, заключенные в таблице
-
…
…
Построить многочлен, значит, определить
его коэффициенты
.
Для этого введем функцию
и
потребуем, чтобы
,
где
- отклонение функции от экспериментальной
в узлах
.
Используя вид , получим:
.
Необходимыми условиями экстремума
функции
является равенство нулю ее первой
производной по всем переменным
.
Расписав эти условия, получим СЛАУ вида:
Запишем систему для определения
в нормальной форме:
Решаем систему одним из известных методов и находим , которые затем подставляем в искомый многочлен.
Запишем алгоритм метода наименьших квадратов.
Вводим таблицу чисел
.
Вычисляем
.
Решая любым известным методом полученную систему линейных алгебраических уравнений, находим - коэффициенты искомого многочлена.
Для таблицы узловых точек, приведенных выше, построим аппроксимационный многочлен второго порядка методом наименьших квадратов вида:
.
Для этого необходимо вычислить следующие суммы
и
решить СЛАУ относительно неизвестных
коэффициентов
вида:
Значения неизвестных коэффициентов равны:
.
Тогда искомый многочлен второго порядка будет иметь вид:
.
Нетрудно заметить, что в узловых точках значения многочлена и табличной функции не совпадают. Погрешность вычислений по данной формуле в контрольной точке, по сравнению с истинным значением, составляет
.
6. Решение обыкновенных дифференциальных уравнений и систем.
Дифференциальные уравнения являются основным математическим инструментом моделирования и анализа разнообразных явлений и процессов в науке и технике.
Методы их решения подразделяются на два класса:
аналитические методы, в которых решение получается в виде аналитических функций;
численные (приближенные) методы, где искомые интегральные кривые получают в виде таблиц их численных значений.
Применение аналитических методов позволяет исследовать полученные решения методами математического анализа и сделать соответствующие выводы о свойствах моделируемого явления или процесса. К сожалению, с помощью таких методов можно решать достаточно ограниченный круг реальных задач. Численные методы позволяют получить с определенной точностью приближенное решение практически любой задачи.
Решить дифференциальное уравнение
(16)
численным
методом означает, что для заданной
последовательности аргументов
и числа
,
не определяя аналитического вида функции
,
найти значения
,
удовлетворяющие условиям:
.
Рассмотрим три наиболее распространенных при решении практических задач численных метода интегрирования Эйлера, Рунге-Кутта и Адамса.