Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
01 ИССЛЕДОВАНИЕ ПРОЧНОСТНЫХ СВОЙСТВ МАТЕРИАЛОВ.doc
Скачиваний:
9
Добавлен:
20.08.2019
Размер:
2.18 Mб
Скачать

18

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Саратовский государственный технический университет

ИССЛЕДОВАНИЕ ПРОЧНОСТных свойств МАТЕРИАЛОВ

Методические указания к лабораторной работе для студентов всех специальностей всех форм обучения

Одобрено

редакционно-издательским советом

Саратовского государственного

технического университета

Саратов 2009

Цель работы: изучить методику испытания прочности и пластичности материалов при растяжении и научиться по результатам испытания оценивать сопротивление материалов растягивающим статическим нагрузкам.

Основные понятия Механические свойства материалов

Целью механических испытаний материалов является определение тех свойств, которые с наибольшей полнотой будут характеризовать надежность работы соответствующих изделий (деталей машин, приборов и конструкций, а также инструментов) в заданных условиях эксплуатации. Совокупность таких механических свойств можно называть конструктивной прочностью.

В качестве критериев оценки конструктивной прочности принимают разные сочетания механических свойств. Можно выделить следующие группы критериев:

- оценки прочностных свойств материалов, определяемые часто независимо от особенностей изготовляемых из них изделий и условий их эксплуатации;

- оценки свойств материалов непосредственно связанных с условиями эксплуатации изделий и определяющие их долговечность и надежность (усталостная прочность, контактная выносливость, износостойкость, коррозионная стойкость и др.);

- оценки прочности конструкций в целом, определяемые при стендовых и эксплуатационных испытаниях. При таких испытаниях выявляется влияние не только материала, но и всех технологических операций изготовления изделий и конструктивных факторов.

В данной лабораторной работе основное внимание будет уделено оценке прочностных свойств материалов, которые обычно определяют в условиях растяжения при статическом нагружении (пределы прочности, текучести, пропорциональности, а также ха­рактеристики пластичности).

Прочностью материала называют его способность сопротивляться деформации и разрушению при действии механических сил. Пластичность материала представляет его склонность приобретать остаточную деформацию без разрушения под действием механических сил.

Для испытания на растяжение исполь­зуют разрывные испытательные машины. Для испытаний используют образцы пропорциональные цилиндрические (рис. 1) или плоские (рис. 2). Для плоских образцов соотношение между шириной и толщиной в рабочей части не должно превышать 8:1.

Рис. 1. Типы пропорциональных цилиндрических образцов для испытаний на растяжение (ГОСТ 1497-84)

Рис. 2. Типы пропорциональных плоских образцов (ГОСТ 1497-84):

а — тип I, плоские образцы с головками; 6 — тип II, плоские образцы без головок

Испытания на растяжение

При растяжении образца до разрушения графически фиксируют зависимости между приложенным уси­лием и удлинением образца, получая диаграммы дефор­мации (рис. 3).

Рис. 3. Диаграмма деформации материала

Деформация образца при нагружении сначала является макроупругой, а затем постепенно и в разных зернах при неодина­ковой нагрузке переходит в пластическую, происходящую путем сдвигов по дислокационному механизму. Накопление дислокаций в результате деформации ведет к упрочнению металла, но при значительной их плотности, особенно в отдельных участках, возникают очаги разрушения, приводящие в конечном счете к пол­ному разрушению образца в целом.

При испытании на растяжение согласно ГОСТ 1497-84 определяют следующие ха­рактеристики:

1. Предел пропорциональности σпц – отвечает напряжению, при котором отклонение от линейной зависимости между нагрузкой и удлинением достигает такой величины, что тангенс угла наклона, образованного касательной к кривой нагрузка-удлинение в точке Рпц с осью нагрузок увеличивается на 50 % от своего значения на упругом (линейном) участке. На рис. 4 показано определение предела пропорциональности графическим способом. В этом случае из начала координат диаграммы растя­жения, записанной от электрического силоизмерителя и измери­теля деформации, проводят прямую, совпадающую с начальным линейным участком этой диаграммы. Затем на произвольном уровне проводят прямую АВ, параллельную оси абсцисс, и на ней откладывают отрезок rn равный половине отрезка mr. Через точку п и начало координат проводят прямую On и параллельно ей – касательную CD к диаграмме растяжения. Точка касания определяет нагрузку Рпц в ньютонах, отвечающую пределу про­порциональности:

где Fo – начальное поперечное сечение образца.

Размеры пропорциональных цилиндрических образцов III типа и плоских образцов для испытания на растяжение приведены в табл. 1 и табл. 2 соответственно.

Таблица 1

Размеры пропорциональных цилиндрических образцов III типа, мм

Номер

образца

d0

l0=5d0

l=10d

D

h1

h2

r

1

25

125

250

45

30

5

5

2

20

100

200

34

25

5

5

3

15

75

150

28

20

3

3

4

10

50

100

16

10

3

3

5

8

40

80

13

10

3

2

6

6

30

60

12

10

2,5

1,5

7

5

25

50

11

10

2,5

1,5

8

4

20

40

9

8

2,5

1,5

9

3

15

30

7

7

2,0

1,5

Таблица 2

Размеры пропорциональных плоских образцов, мм

Номер

образца

a0

b0

l0=5,65

l0=11,3

B

h1

1

25

30

155

310

40

100

2

24

30

155

310

40

100

3

23

30

150

300

40

90

4

22

30

145

290

40

90

5

21

30

140

280

40

80

6

20

30

140

280

40

80

7

19

30

135

270

40

80

8

18

30

130

260

40

80

9

17

30

125

250

40

80

10

16

30

125

250

40

80

11

15

30

120

240

40

70

12

14

30

115

230

40

70

13

13

30

110

220

40

70

14

12

30

105

210

40

60

15

11

30

105

210

40

60

16

10

30

100

200

40

60

17

9

30

90

180

40

50

18

8

30

85

170

40

50

19

7

20

70

140

40

50

20

6

20

65

130

40

50

21

5

20

60

120

40

50

22

4

20

50

100

40

50

23

3

20

45

90

30

40

2. Предел упругости а0,05 – напряжение, при котором оста­точное удлинение достигает 0,05 % длины участка рабочей части образца, равного базе тензометра. Определяют предел упругости расчетным (по разгрузке и нагрузке) и графическим способами. При использовании способа нагрузки с допуском на величину полного удлинения (упругого + остаточного) образец после уста­новки на него тензометра нагружают равными ступенями до нагрузки, соответствующей напряжению 70-80 % от предпола­гаемого предела упругости σ0,05. Дальнейшее нагружение про­водят более мелкими ступенями с выдержкой не более 7 с.

Вычисляют величину допуска на полное удлинение суммиро­ванием определенного среднего упругого удлинения и рассчитан­ного остаточного удлинения.

Определяют нагрузку Р0,05, соответствующую установленному допуску на полное удлинение образца. Для уточнения значения Р0,05 допускается применение метода линейной интерполяции.

Графическим способом предел упругости σ0,05 определяют по начальному участку диаграммы растяжения, записанной от электрических силоизмерителя и измерителя деформации (рис. 4). Удлинение определяется на участке, равном базе измерителя деформации.

Для определения нагрузки Р0,05 вычисляют соответствующее остаточное удлинение с учетом базы измерителя деформации. Найденное значение увеличивают пропорционально масштабу диаграммы по оси абсцисс вправо от начала координат О. Из точки Е проводят прямую ЕР, параллельную прямой ОА. Точка пере­сечения Р с диаграммой растя­жения определяет искомую на­грузку Р0,05. Масштаб по оси удлинения должен быть не менее 100 : 1 при базе измери­теля деформации 50 мм и более и не менее 200 : 1 при базе из­мерителя менее 50 мм; по оси нагрузки 1 мм диаграммы дол­жен соответствовать не более 10 МПа.

Предел упругости σ0,05 вы­числяют по формуле, МПа:

.

Рис. 4. Схема определения предела про­порциональности σпц при растяжении

Рис. 5. Схема определения предела упру­гости σ0,05 при растяжении

3. Модуль упругости Е – отношение приращения напря­жения к соответствующему приращению удлинения в пределах упругой деформации; модуль упругости определяют расчетным способом с помощью тензометров и графическим способом по начальному участку диаграммы растяжения, записанной от элек­трических силоизмерителя и измерителя деформации.

Модуль упругости вычисляют по формуле, МПа:

,

где – приращение нагрузки; – среднее приращение удлинения; – начальная расчетная длина образца; Fо – на­чальная площадь поперечного сечения.

4. Предел текучести физический (нижний предел текучести) – наименьшее напряжение, при котором образец деформируется без заметного увеличения растягивающей нагрузки.

Верхний предел текучести – напряжение, соответству­ющее верхнему пику нагрузки, зарегистрированному до начала текучести рабочей части образца.

Предел текучести (условный) – напряжение при котором остаточное удлинение достигает 0,2 % длины участка образца на его рабочей части, удлинение которого принимается в расчет при определении указанной характеристики. Упомянутые пределы текучести определяют по диаграмме растяжения, полученной на испытательной машине, если 1 мм диаграммы по оси нагрузок соответствует не более 10 МПа:

МПа

Соответствующие нагрузки Рт, Ртв, Ртн для различных видов диаграммы растяжения представлены на рис. 6.

Предел текучести условный определяют расчетным спосо­бом с применением тензометров так же, как и предел упругости . Для определения графическим методом сначала вы­числяют величину остаточного удлинения с учетом установленного допуска исходя из рабочей длины образца. Найденное значение увеличивают про­порционально масштабу диаграммы рас­тяжения и полученный отрезок длины откладывают по оси удлинения от точки О до точки Е (см. рис. 6). Из точки Е проводят прямую параллельно прямой ОА. Точка пересечения Р с диаграммой растяжения определяет нагрузку Р0,2, соответствующую условному пределу те­кучести , МПа:

.

Рис. 6. Схема определения предела текучести при растяжении

Условный предел текучести определяют только при отсутствии на диаграмме растяжения площадки текучести.

5. Временное сопротивление (предел прочности) σв – напря­жение, соответствующее наибольшей нагрузке Ртах, предшеству­ющей разрыву образца. Временное сопротивление вычисляют по формуле, МПа:

6. Относительное удлинение (после разрыва) – одна из харак­теристик пластичности материалов, равная отношению прираще­ния расчетной длины образца после разрушения к начальной расчетной длине , %:

7. Относительное равномерное удлинение – отношение при-ращения длины участков в рабочей части образца после разрыва к длине до испытания, выраженное в процентах.

8. Относительное сужение после разрыва , как и относи­тельное удлинение – характеристика пластичности материала и определяется как отношение разности Fo и минимальной Fк площади поперечного сечения образца после разрушения к на­чальной площади поперечного сечения Fo, выраженное в про­центах.