
- •Практические и лабораторные
- •Занятия по физике
- •Учебное пособие
- •Для студентов первого курса медицинских вузов
- •Содержание
- •Лабораторная работа №1 определение плотности твердого тела
- •Расчет ошибок прямого измерения
- •Расчет ошибок косвенного измерения
- •1. Штангенциркуль
- •Микрометр
- •Лабораторная работа №2 определение момента инерции тела
- •Описание установки
- •Контрольные вопросы
- •Лабораторная работа №3 изучение упругих свойств костной ткани
- •Механические свойства костной ткани
- •Практическая часть
- •Лабораторная работа №4 изучение основных закономерностей гидродинамики и реологии
- •Линии и трубки тока. Уравнение неразрывности струи
- •Уравнение Бернулли и примеры его практического использования
- •Вязкость жидкости. Формула Ньютона. Коэффициент вязкости
- •Течение вязкой жидкости по цилиндрическим трубам. Формула Пуазейля. Ламинарное и турбулентное течение жидкости. Понятие о числе Рейнольдса
- •Определение коэффициента вязкости методом Стокса
- •Измерение коэффициента вязкости жидкости вискозиметром Гесса
- •Лабораторная работа №5 изучение аппарата для гальванизации
- •Контрольные вопросы
- •Лабораторная работа №6 изучение процессов, происходящих в цепи гармонического переменного тока
- •Цепь переменного тока с активным сопротивлением
- •Индуктивность в цепи переменного тока
- •Емкость в цепи переменного тока
- •Цепь переменного тока с активным, индуктивным и емкостным сопротивлениями
- •Импеданс тканей организма
- •Упражнение 1. Определение индуктивности катушки
- •Упражнение 2. Определение емкости конденсатора
- •Упражнение 3. Проверка закона Ома для полной цепи переменного тока
- •Лабораторная работа №7 изучение работы электронного осциллографа
- •Электронно-лучевая трубка
- •Электронная пушка
- •Экран электронного осциллографа
- •Система отклоняющих пластин
- •Генератор развертки
- •Чувствительность вертикального входа осциллографа к переменному напряжению
- •Упражнение 1. Знакомство с назначением ручек управления электронного осциллографа
- •Упражнение 2. Измерение частоты сигнала по фигурам Лиссажу.
- •Упражнение 4. Измерение величины неизвестного напряжения
- •Контрольные вопросы
- •Лабораторная работа №8 изучение аппарата низкочастотной терапии
- •График, иллюстрирующий это уравнение, представлен на рис.2
- •Действие импульсных токов на ткани организма
- •Приборы и принадлежности:
- •Порядок выполнения работы
- •Лабораторная работа №9 высокочастотная электротерапия
- •Физиологические реакции и терапевтический эффект
- •Физиологические реакции и терапевтический эффект
- •Показания
- •Микроволновая терапия
- •Физиологические реакции и терапевтический эффект
- •Показания
- •Действие переменного электрического
- •Поля увч на диэлектрики
- •Контрольные вопросы
- •Лабораторная работа №10 исследование работы датчиков
- •Устройство и классификация датчиков
- •Генераторные датчики
- •Параметрические датчики
- •Датчики медико-биологической информации
- •Изучение тензорезистора
- •Изучение датчиков температуры
- •Лабораторная работа №11 определение увеличения микроскопа и измерение линейных размеров малых объектов
- •Оптическая система и принцип действия микроскопа
- •Фокусное расстояние
- •Разрешающая способность микроскопа
- •Полезное увеличение микроскопа ограничено его разрешающей способностью и разрешающей способностью глаза.
- •Некоторые распространенные и специальные методы оптической микроскопии
- •Измерение линейных размеров малых объектов с помощью микроскопа
- •Порядок выполнения работы
- •Лабораторная работа № 12 физические основы электрокардиографии
- •Порядок выполнения работы
- •Контрольные вопросы
- •Список литературы
- •614990, Г. Пермь,ул. Большевистская,85
Разрешающая способность микроскопа
Технически возможно создать оптические микроскопы, объективы и окуляры которых дадут общее увеличение 1500-2000 и больше. Однако это нецелесообразно, так как возможность различить мелкие детали предмета ограничивается дифракционными явлениями. Вследствие этого изображение мельчайших деталей предмета теряет резкость, может возникнуть нарушение геометрического подобия изображения и предмета, соседние точки будут сливаться в одну, возможно полное исчезновение изображения. Поэтому в оптике существуют следующие понятия, которые характеризуют качество микроскопа:
Разрешающая способность микроскопа - свойство микроскопа давать раздельно изображение мелких деталей рассматриваемого предмета.
Предел разрешения - это наименьшее расстояние между двумя точками, которые видны в микроскопе раздельно.
Чем меньше предел разрешения, тем выше разрешающая способность микроскопа!
Предел разрешения обусловливает наименьший размер деталей, которые могут различаться в препарате с помощью микроскопа.
Теорию разрешающей способности микроскопа разработал директор завода К.Цейса в Йене профессор-оптик Э.Аббе (1840-1905). В качестве простейшего микропрепарата он взял дифракционную решетку ( рис. 2), изучил механизм формирования изображения в микроскопе и показал следующее.
и минимумов.
Рис. 2
Далее в формировании изображения участвуют только лучи, образующие главные максимумы. Они пересекаются в соответствующей плоскости и дают изображение объекта D’D’.
Введем понятие апертурного угла - это угол между крайними лучами конического светового пучка, идущего от середины объекта в объектив ( рис. 3,а). Для создания изображения, то есть для разрешения объекта, достаточно, чтобы в объектив попали лучи, образующие максимумы только нулевого и первого порядка хотя бы с одной стороны ( рис. 2 и 3,б). Участие в образовании изображения лучей от большего количества максимумов повышает качество изображения, его контраст. Поэтому лучи, образующие эти максимумы, должны быть в пределах апертурного угла объектива.
а) б) в) г)
1- фронтальная линза объектива, 2 - объектив
Рис .3
Таким образом, если объектом является дифракционная решетка с периодом d и свет падает на нее нормально ( рис.2 и 3,б), то в формировании изображения обязательно должны участвовать лучи, образующие максимумы нулевого и первого порядков с обеих сторон, а угол 1 - угол отклонения лучей, образующих максимум первого порядка, соответственно должен быть, в крайнем случае, равен углу U/2.
Если же взять решетку с меньшим периодом d’, то угол ’1 будет больше угла U/2 и изображение не возникнет. Значит период решетки d можно принять за предел разрешения микроскопа Z. Тогда, используя формулу дифракционной решетки, запишем для k=1:
.
Заменяя d на Z, а 1 на U/2, получим
.
(6)
Во время микроскопии световые лучи падают на объект под разными углами. При наклонном падении лучей (рис.3,г) предел разрешения уменьшается, так как в формировании изображения будут участвовать только лучи, образующие максимумы нулевого порядка и первого порядка с одной стороны, а угол 1 будет равен апертурному углу U. Расчеты показывают, что формула для предела разрешения в этом случае принимает следующий вид:
.
(7)
Если пространство между объектом и объективом заполнить иммерсионной средой с показателем преломления n, который больше показателя преломления воздуха, то длина волны света n = n . Подставляя это выражение в формулу для предела разрешения (7), получим
,
или
. (8)
Таким образом, формула (7) определяет предел разрешения для микроскопа с сухим объективом, а формула (8) -для микроскопа с иммерсионным объективом. Величины sin 0,5U и nsin 0,5U в этих формулах называют числовой апертурой объектива и обозначают буквой А. Учитывая это, формулу предела разрешения микроскопа в общем виде записывают так :
.
( 9)
Как видно из формул (8) и (9), разрешающая способность микроскопа зависит от длины волны света, величины апертурного угла, показателя преломления среды между объективом и объектом, угла падения световых лучей на объект, но она не зависит от параметров окуляра. Окуляр никакой дополнительной информации о структуре объекта не дает, качества изображения не повышает, он лишь увеличивает промежуточное изображение.
Разрешающая способность микроскопа может быть повышена за счет использования иммерсии и уменьшения длины волны света. Повышение разрешающей способности при использовании иммерсии можно пояснить следующим образом. Если между объективом и объектом находится воздух (сухой объектив), то световой луч при переходе из покровного стекла в воздух, среду с меньшим показателем преломления, значительно изменяет свое направление в результате преломления, поэтому меньше лучей попадает в объектив. При использовании иммерсионной среды, показатель преломления которой приблизительно равен показателю преломления стекла, изменение хода лучей в среде не наблюдается и большее количество лучей попадает в объектив.
В качестве иммерсионной жидкости берут воду (n=1,33), кедровое масло (n=1,515) и др. Если максимальный апертурный угол у современных объективов достигает 1400 , то для сухого объектива А=0,94, а для объектива с масляной иммерсией А=1,43. Если при расчете использовать длину волны света = 555 нм, к которой наиболее чувствителен глаз, то предел разрешения сухого объектива составит 0,30 мкм, а с масляной иммерсией - 0,19 мкм. Значение числовой апертуры указывается на оправе объектива: 0,20; 0,40; 0,65 и др.
Повышение разрешающей способности оптического микроскопа за счет уменьшения длины волны света достигается при использовании ультрафиолетового излучения. Для этого имеются специальные ультрафиолетовые микроскопы с кварцевой оптикой и приспособлениями для наблюдения и фотографирования объектов. Так как в этих микроскопах используется свет с длиной волны примерно в два раза меньше, чем у видимого света, то они способны разрешать структуры препарата размерами около 0,1мкм. Ультрафиолетовая микроскопия имеет еще одно преимущество - с ее помощью можно исследовать неокрашенные препараты. Большинство биологических объектов прозрачны в видимом свете, так как не поглощают его. Однако они обладают избирательным поглощением в ультрафиолетовой области и, следовательно, легко различимы в ультрафиолетовых лучах.
Наибольшая разрешающая способность у электронного микроскопа, так как длина волны при движении электрона в 1000 раз меньше длины световой волны.