
- •1. Этапы
- •История инженерной деятельности ( (этапы и стратегии развития металлорежущих станков)
- •Часть 1 философские аспекты инженерного труда 7
- •Раздел 1 законы строения и развития техники 7
- •Раздел 2 структура и функции инженерной деятельности 11
- •Введение
- •Часть 1 философские аспекты инженерного труда Раздел 1 законы строения и развития техники
- •1.1 Закон прогрессивной эволюции техники.
- •Вопросы для самоанализа.
- •1.2 Закон соответствия между функцией и структурой
- •1.3 Закон стадийного развития техники
- •1.4 Использование других законов техники
- •1.5 О роли красоты в инженерном творчестве
- •Раздел 2 структура и функции инженерной деятельности
- •2.1 Философские мотивы развития инженерной деятельности
- •2.2 Внутренние (технологические) функции инженерной деятельности:
- •2.2.1 Изобретательство. Методы инженерного творчества
- •2.2.2 Исследовательская функция
- •2.2.3 Конструкторская функция
- •2.2.4 Функция проектирования
- •2.2.5 Технологическая функция.
- •2.2.6 Функция регулирования производства.
- •2.2.7 Функция эксплуатации и ремонта оборудования.
- •2.2.8 Функция системного проектирования.
- •Часть 2 Технология машиностроения как теоретическая основа станкостроения Раздел 3 роль технологии машиностроения в истории инженерной деятельности
- •3.1 Терминология раздела, история формирования
- •Вопросы для самоанализа
- •1. Какая технология является самой древней в истории человечества?
- •Подсказки для студентов. (Зарождение технологий. История металлургии)
- •Какие характеристики материалов играют важнейшую роль в смене эпох в истории человечества?
- •Почему бронза и железные сплавы играют основную роль в истории?
- •4.2 Металлорежущие станки. Развитие и усовершенствование.
- •Вопросы для самоанализа.
- •Резюме.
- •Подсказки для студентов.
- •4.3 Токарные станки. Их роль и место в истории инженерной деятельности
- •4.3.1 Краткий экскурс в историю
- •Развитие токарного станка
- •4.3.2 Истоки и причины модификации токарных станков
- •4.3.2.1 Возникновение и развитие лучкового токарного станка
- •4.3.2.2 Станки, приводимые в действие с помощью деревянной
- •4.3.2.3 Отделение привода от станка; станки с маховиками;
- •Вопросы для самоанализа
- •Раздел 5 тенденции развития станкостроения
- •5.1 Краткий экскурс в историю обработки резанием
- •Вопросы для самоанализа.
- •5.2 Классификация металлорежущих станков
- •Раздел 6 архаичные мотивы в станкостроении в иллюстрациях
- •6.1. Станки - монстры прошлого века
- •6.2. Выводы и перспективы изменения стратегий станкостроения.
- •Раздел 7 тенденции развития современных станков
- •7.1. Технологические мотивы формирования стратегий станкостроения.
- •7.2 Внедрение электропривода в машиностроении
- •7.3 Развитие науки о металлообработке
- •Раздел 8 стратегии развития металлорежущих станков
- •8.1 Анализ путей и стратегий станкостроения
- •8.2 Иллюстрации к этапам развития металлорежущих станков
- •8.3 Реализация стратегий в иллюстрациях (на примере станков компании goodway, Тайвань
- •Токарно-фрезерные оц goodway
- •Часть 4 Перспективные направления инженерного дела Раздел 9 сущность и содержание современной научно-технической революции и ее влияние на развитие инженерного дела
- •9.1. Проблематика раздела
- •9.2 Историческая справка
- •9.3. Актуальность и сущность нтр
- •9.4 Сущность перемен при нтр
- •Раздел 10. Прогноз ведущих направлений развития материаловедения функциональных материалов
- •10.1 Идеология прогноза.
- •10.2 Оценка влияний нанотехнологий на экономику
- •10.3 Прогнозные материалы развития материаловедения
- •10.4 Прогнозні матеріали развитку матеріалознавства (переклад)
- •Раздел 11 тенденции развития современного материаловедения
- •11.1 Обзор состояния нанонауки и нанотехнологии в мире и в Украине.
- •11.2 Проблемы, сдерживающие развитие и реализацию нанотехнологий в Украине
- •11.3 Минимальные необходимые меры для реализации нанотехнологий в Украине
- •11.4 Общество Макса Планка – «Белая книга»
- •11.5 Порошковая металургия (пм). Роль пм в нтр.
- •Раздел 12 компьютеризация и ее роль в станкостроении
- •Вопросы для текущего контроля знаний по дисциплине иид
- •Ответы на вопросы для текущего контроля знаний по дисциплине иид
- •1. Укажите наиболее древний метод обработки материалов
- •2. Укажите наиболее современный метод обработки материалов
- •3. Какой метод обработки резанием является наиболее древним
- •4. Какой метод обработки резанием является наиболее современным
- •5. Когда и в связи с какой задачей появились металлорежущие станки
- •6. Из каких металлов впервые изготавливали детали, применяя токарную обработку
- •7. Появление какой детали (узла) в конструкции станка означало создание металлорежущего станка
- •8. Какая деталь (узел) токарного станка является наиболее древней
- •9. Какая деталь (узел) токарного станка является наиболее современной
- •10. Какая деталь (узел) сверлильного станка является наиболее древней
- •11. Какая деталь (узел) сверлильного станка является наиболее современной
- •Библиографический список
- •Книга 2-х, 3-х авторов;
- •Книга под заглавием;
- •Статья из журналов (1 ,2,3-х автора ) :
6.2. Выводы и перспективы изменения стратегий станкостроения.
Следует отметить, что введение числового программного управления на этом этапе развития не затронуло основную стратегию станкостроения - обеспечение точности за счет массивности станка.
Изменение стратегии произойдет несколько позже и будет связано с широким внедрением систем и средств числового программного управления, их миниатюризацией. Другим важным фактором изменения стратегии обеспечения точности за счет массивности станка и переход на другую стратегию – достижение точности при снижении массивности конструкции станка, котроая была достигнута за счет использования локализованных силовых приводов и устранения развитых кинематических цепей.
Таким образом новая стратегия станкостроения – обеспечение высокой точности металлорежущих станков за счет сокращения кинематических цепей силовых и управленческих приводов позволило существенно уменьшить массу станков и обеспечить высокий уровень универсальности и полифункциональности металлорежущих станков.
РЕЗЮМЕ. Этот раздел носит вспомогательный характер. Материалы, изложенные здесь могут быть дополнением к разделу 3.
Рассмотрим теперь тенденции развития современных металлорежущих станков.
Раздел 7 тенденции развития современных станков
7.1. Технологические мотивы формирования стратегий станкостроения.
В станкостроении конца XIX в. господствовали пять основных типов станков: токарные, строгальные (долбежные), сверлильные, фрезерные и шлифовальные.
С 70-х годов XIX в. все эти типы станков развиваются в сторону более узкой дифференциации и специализации. На базе универсального токарного станка создаются горизонтально-расточный, лобовой токарный , карусельно-токарный станки.
Появилось много ответвлений и у других основных станков. В машиностроении этого времени разработка способов резания металлов вообще занимает большое место. Происходит более резкая дифференциация режущих инструментов и режущих деталей станков. Появились так называемые резьбовые фрезы, фасонные резцы, разнообразные зуборезные инструменты, червячные фрезы и т.д.
Механический суппорт получил дальнейшее развитие. Движение суппорта было автоматизировано. Возникли также автоматы и полуавтоматы.
Изменился сам материал, из которого изготовлялись станки. Начали использоваться стали более высоких марок. На режущий инструмент шла теперь инструментальная сталь разнообразных сортов. Она не теряла своей твердости даже при перегреве до красного каления, т.е. до 600°С.
Специализация машиностроения способствовала внедрению в него автоматики, так как сужение функций станка прямо вело к упрощению выполняемых им операций и тем самым создавало благоприятные условия для внедрения автоматических процессов.
В XX в. массовое производство сначала получило распространение при изготовлении деталей (болтов, штифтов, гаек, шайб и т.д.). Для производства таких деталей впервые и были созданы станки – автоматы и полуавтоматы. Затем появились продольно-фассонные, фассонно-отрезные, многошпиндельные автоматы. В массовом крупносерийном и отчасти в серийном производстве большое распространение получили токарные полуавтоматы, предназначенные для тяжелых и сложных работ. В таких станках не автоматизированы лишь установка и закрепление заготовок, пуск станка и снятие обработанного изделия.
Современные высокопроизводительные металлорежущие станки построены на широком использовании принципов многоинструментности и многопозиционности, специализированы и часто предназначаются для выполнения определенной операции.
Однако специальные станки узкоцелевого назначения трудно переключить на другие работы при смене вида продукции. Для устранения этого недостатка стали создавать агрегатные станки, конструируемые из набора различных нормализованных укрупненных узлов-агрегатов.
Агрегатные станки позволяют выполнить на одном станке различные виды обработки изделий одновременно несколькими инструментами, что значительно снижает трудоемкость механической обработки деталей.
Агрегатные станки приобрели особое значение в связи с появлением и развитием автоматических станочных линий.
Впервые автоматическая станочная линия была установлена в Англии в 1923-1924 гг. для механической обработки блоков цилиндров и других крупных деталей. Она выполняла 53 операции и обрабатывала 15 блоков в час, обслуживалась 21 оператором.
Впервые в Советском Союзе станочная линия была создана в 1939 г. на Волгоградском тракторном заводе для обработки роликовых втулок гусеничных тракторов. Была построена на базе 5 модернизированных станков ручного управления.
Во время второй мировой войны, в послевоенные годы автоматические станочные линии агрегатных станков получили широкое распространение.
Успехи науки и техники позволили перейти от отдельных поточных автоматических линий к автоматическим цехам, затем - к автоматическим заводам.
В 1956 г. на Первом ГПЗ вошел в строй цех с двумя автоматическими линиями по производству шариковых и роликовых подшипников. Полностью автоматизированы все операции механической и термической обработки колец подшипников, контроля, сборки, антикоррозийной обработки, упаковки и удаления стружки. В результате производственный цикл сократился в 4 – 5 раз, производительность одного рабочего выросла в 2 раза.
В 1949 г. в СССР впервые в мире был построен автоматический завод по производству поршней, который обслуживают 9 рабочих в смену, выпуск 3500 поршней в сутки.