Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теория и тенология ФГМ обработки.doc
Скачиваний:
30
Добавлен:
09.11.2019
Размер:
3.59 Mб
Скачать

2.13 Построение и уравнивание маршрутной и блочной фототриангуляции по методу связок

При построении сети фототриангуляции методом связок для каждого изображения точки (определяемой и опорной), измеренного на снимке составляются уравнения коллинеарности:

в которых:

;

x,y – координаты изображения точки местности, измеренной на снимке;

X,Y,Z – координаты точки местности в системе координат объекта OXYZ;

XS,YS, ZS – координаты центров проекции снимка в системе координат объекта;

А – матрица преобразования координат, элементы a ij которой являются функциями угловых элементов внешнего ориентирования снимка.

Уравнения поправок, соответствующие условным уравнениям (1.5.1) имеют вид:

Для каждой планово-высотной опорной точки составляются уравнения поправок:

в которых:

X,Y,Z – измеренные координаты опорной точки,

Xo,Yo,Zo – приближенные значения координат опорной точки.

Для плановой опорной точки составляются два первых уравнения из системы уравнений (1.5.5), а для высотной опорной точки третье уравнение.

Если с помощью системы GPS были определены координаты центров проекций снимков S, то для каждого центра проекции составляются уравнения поправок:

в которых:

Xs,Ys,Zs – измеренные координаты центров проекции снимков,

XoS, YoS, ZoS – их приближенные значения.

В случае, если при съемке с помощью навигационного комплекса, включающего инерциальную и GPS системы, были определены угловые элементы внешнего ориентирования снимков для каждого снимка составляются уравнения поправок:

(2.40)

в которых:

- измеренные значения угловых ЭВО,

- их приближенные значения.

Полученную таким образом систему уравнений поправок решают методом приближений по методу наименьших квадратов под условием VTPV=min.

В результате решения находят значения элементов ориентирования снимков сети и координаты точек сети в системе координат объекта.

В первом приближении в уравнениях поправок (2.38), (2.39) и (2.40) приближенные значения неизвестных принимаются равными их измеренным значениям.

С геометрической точки зрения сеть фототриангуляции по методу связок строится под условием пересечения соответственных проектирующих лучей связок в точках объекта (рис. 2.5):

Рис. 2.5 .

При построении и уравнивании сетей маршрутной и блочной фототриангуляции в измеренные на снимках значения координат точек вводятся поправки, позволяющие исключить систематические ошибки снимков, вызываемые дисторсией объектива съемочной камеры, деформацией фотопленки, атмосферной рефракцией.

Однако снимки, тем не менее, имеют остаточные систематические искажения, которые вызваны изменением в полете параметров элементов внутреннего ориентирования и дисторсии объектива съемочной камеры из за отличия температуры и давления от их значений при проведении калибровки съемочной камеры, отличием параметров слоя атмосферы от параметров стандартной атмосферы, влиянием на положение точек на снимке оптического люка и другими причинами.

Систематические искажения снимков можно исключить или в значительной мере ослабить их влияние и, как следствие, повысить точность построения сети фототриангуляци, при ее построении и уравнивании по методу связок с самокалибровкой.

В этом методе построения и уравнивания сети фототриангуляции в отличие от метода изложенного в разделе 1.5 для каждой точки, измеренной на снимке, составляются уравнения:

(2.41)

в которых:

а и - полиномы, описывающие систематические искажения снимков.

Полиномы, описывающие в уравнениях 1.6.1 систематические искажения снимков, могут иметь различный вид. В качестве примера приведем один из таких полиномов:

(2.42)

где

Уравнения поправок соответствующие уравнениям (1.6.1) имеют вид:

Построение и уравнивание сети фототриангуляции производится аналогично построению и уравниванию сети фототриангуляции по методу связок в результате решения по методу наименьших квадратов системы уравнений поправок (2.43) и уравнений поправок, составленных для опорных точек и измеренных значений элементов внешнего ориентирования снимков.

В результате решения определяют значения элементов внешнего ориентирования снимков, координат точек местности и коэффициентов полинома (2.42).

Необходимо заметить, что общее количество неизвестных определяемых при построении и уравнивании сети фототриангуляции в рассматриваемом способе увеличивается на количество коэффициентов полинома (в нашем случае эта величина равна 5).

При построении сети необходимо контролировать степень корреляции коэффициентов полинома, элементов внешнего ориентирования снимков и координат точек местности.

В случае большой степени корреляции коэффициентов полинома между собой и другими определяемыми величинами эти коэффициенты необходимо исключить или использовать другой вид полинома.