
- •Содержание
- •2.2. Трансдисциплинарная идея моделирования природы
- •2.3. Трансдисциплинарная идея единства объекта и его окружения
- •2.4. Трансдисциплинарная идея пространственно-временных отношений в природе
- •2.5. Трансдисциплинарная идея целостности природы
- •2.6. Трансдисциплинарная идея экспериментальной достоверности
- •2.7. Роль трансдисциплинарных идей в целостном понимании природы
- •3.1.2. Концепция единого пространства-времени.
- •3.1.3. Концепция моделирования объектов
- •3.1.4. Концепция контролируемого воздействия.
- •3.1.5. Специфика классических моделей химии и биологии
- •3.2. Образ природы в неклассическом естествознании
- •3.2.1. Концепция измерения в неклассическом естествознании
- •3.2.2. Концепция моделирования состояний
- •3.2.3. Целостность микросостояний. Особенность микросостояний системы тождественных частиц
- •3.2.4.Концепция макросостояний объектов
- •3.2.5. Концепция флуктуации и их корреляций
- •3.2.6. Флуктуации и альтернативная корреляция между ними в микромире
- •Лекция №4.
- •4. Концепция измерения в классическом естествознании. Классические измерительные системы. Проблема измерения в классическом естествознании. Единицы измерения и системы единиц
- •4.1. Проблема измерения в классическом естествознании
- •4.2. Единицы измерения и системы единиц
- •4.3. Возникновение систем мер.
- •4.4.Возникновение и распространение метрической системы мер.
- •4.5. Эталоны.
- •4.6. Атомные часы.
- •Лекция №5.
- •5.1. Временные отношения в природе
- •5.2. Пространственные отношения в природе
- •5.3. Движение частицы. Взаимосвязь Пространства и времени
- •5.4. Целостное описание пространства-времени
- •Лекция №6.
- •6.1. Моделирование
- •6.2. Традиции атомизма и непрерывности в естествознании.
- •6.3. Фундаментальные физические модели объектов
- •6.4. Масса как универсальная характеристика инертности и гравитаци.
- •6.5. Импульс как фундаментальная характеристика объекта
- •6.6. Полная энергия и полный момент как фундаментальные характеристики объекта
- •6.7. Роль фундаментальных законов сохранения в описании природы
- •Лекция №7.
- •7.1. Воздействие и взаимодействие
- •7.2. Характеристики контролируемого воздействия на частицу
- •7.3. Фундаментальные силы
- •7.4. Механическая энергия и динамика частицы
- •7.5. Энергия взаимодействия в системе частиц
- •Лекция №8.
- •8.1. Концепция измерения в неклассическом естествознании
- •8.2. Концепция моделирования состояний
- •8.2.1. Неклассические представления о характеристиках объектов и состояний
- •8.2.2. Фундаментальные модели неклассической физики
- •Лекция №9.
- •9.1. Ограничение воздействия на микроуровне как фундаментальный закон природы
- •9.2. Микросостояние одной микрочастицы.
- •9.3. Целостность микросостояний. Особенность микросостояний системы тождественных частиц
- •Лекция №10.
- •10.1. Тепловое равновесие как макросостояние.
- •10.2. Детерминированное и стохастическое движения. Ограничение воздействия на макроуровне как фундаментальный закон природы
- •10.3. Макропараметры как характеристики объектов и их макросостояний в тепловом равновесии
- •10.4. Два способа описания природы на макроуровне.
- •Лекция №11.
- •11.1. Флуктуации и их роль в описании природы
- •11.2. Флуктуации и альтернативная корреляция между ними в микромире
- •11.3. Флуктуации и неальтернативная корреляция между ними в макромире
- •11.4. Универсальные корреляции между флуктуациями в неклассической физике.
- •Лекция №12.
- •12. Физические принципы создания современной эталонной базы. Использование явления сверхпроводимости.
- •12.1. Свойство сверхпроводимости
- •12.2. Изотопический эффект
- •12.3. Функциональные устройства на магнитных вихрях в сверхпроводниках второго рода
- •12.4 Высокотемпературная сверхпроводимость
- •Лекция №13.
- •13. Явление Зеемана. Явление Джозефсона.
- •13.2. Явление Джозефсона.
- •Лекция №14.
- •14. Явление Мессбауэра. Другие эффекты квантовой физики
- •14.1. Краткая история жизни знаменитого ученого. Научные достижения
- •14.2. Предыстория вопроса
- •14.3. Открытие Мёссбауэра
- •14.4. Природа эффекта
- •14.5. Мёссбауэровские изотопы
- •14.6. Общие применения метода
- •14.7. Применение эффекта Мессбаура для изучения свойств поверхности и объема кристаллов
- •14.8. Химические применения метода
- •14.9. Выводы
- •Лекция №15.
- •15.1.Общие сведения.
- •15.2. Объяснение эффекта Холла с помощью электронной теории
- •15.3. Эффект Холла в ферромагнетиках.
- •15.4. Эффект Холла в полупроводниках
- •15.5. Эффект Холла на инерционных электронах в полупроводниках
- •15.6. Датчик эдс Холла
- •Лекция №16.
- •16. Измерение абсолютного заряда электрона и его удельного заряда. Опыт Милликена. Метод Томсона. Метод магнитной фокусировки Буша.
- •16.1. Инерционный метод измерения заряда. История открытия электрона
- •16.2. Метод магнитной фокусировки Буша
- •16.3. Опыт Милликена
- •Лекция №17.
- •17.1. Шумы, обусловленные дискретностью вещества. Помехи
- •17.2. Дробовый эффект
- •17.3.Критерий устойчивости Найквиста. Формула Найквиста
- •17.4. Естественные пределы точности измерений
- •17.5. Методы повышения точности средств измерений и выполнения измерений
- •17.6. Фундаментальный источник погрешностей измерений. Основные понятия и виды погрешностей
- •17.7. Броуновское движение
- •Список используемой литературы:
15.6. Датчик эдс Холла
Датчик ЭДС Холла – это элемент автоматики, радиоэлектроники и измерительной техники, используемый в качестве измерительного преобразователя, действие которого основано на эффекте Холла. Представляет собой тонкую прямоугольную пластину (площадь – несколько мм2), или пленку, изготовленную из полупроводника (Si, Ge, InSb, InAs), имеет четыре электрода для подвода тока и съёма ЭДС Холла. Чтобы избежать механических повреждений, пластинки Холла ЭДС датчика монтируют (а пленку напыляют в вакууме) на прочной подложке из диэлектрика (слюды, керамики). Для получения наибольшего эффекта толщина пластины (плёнки) делается возможно меньшей. Датчики ЭДС Холла применяют для бесконтактного измерения магнитных полей (от 10-6 до 105 Э). При измерении слабых магнитных полей пользуются Холла ЭДС датчиками, вмонтированными в зазоре ферро– или ферримагнитного стержня (концентратора), что позволяет значительно повысить чувствительность датчика. Так как в полупроводниках концентрация носителей зарядов (а следовательно, и коэффициент Холла) может зависеть от температуры, то в случае точных измерений необходимо либо термостатировать Холла ЭДС датчик, либо применять сильнолегированные полупроводники (последнее снижает чувствительность датчика).
При помощи датчика ЭДС Холла можно измерять любую физическую величину, которая однозначно связана с магнитным полем;, в частности, можно изменять силу тока, так как вокруг проводника с током образуется магнитное поле, которое можно измерить. На основе датчика ЭДС Холла созданы амперметры на токи до 100 кА. Кроме того датчики ЭДС Холла применяются в измерителях линейных и угловых перемещений, а также в измерителях градиента магнитного поля, магнитного потока и мощности электрических машин, в бесконтактных преобразователях постоянного тока в переменный и, наконец, в воспроизводящих головках систем звукозаписи.
Контрольные вопросы:
Что такое эффект Холла?
Дайте объяснение эффекта Холла с помощью электронной теории.
Опишите эффект Холла в ферромагнетиках.
Опишите эффект Холла в полупроводниках.
Опишите эффект Холла в инерционных электронах в полупроводниках.
Что такое датчик ЭДС Холла?
Лекция №16.
16. Измерение абсолютного заряда электрона и его удельного заряда. Опыт Милликена. Метод Томсона. Метод магнитной фокусировки Буша.
16.1. Инерционный метод измерения заряда. История открытия электрона
Экспериментальные данные, связанные с образованием химических соединений, подтверждали существование «атомных» частиц и позволили судить о малых размерах и массе отдельных атомов. Однако реальная структура атомов, в том числе и существование еще меньших частиц, составляющих атомы, оставалась неясной до открытия Дж.Дж.Томсоном электрона в 1897.
До той поры атом считался неделимым и различие в химических свойствах различных элементов не имело своего объяснения. Еще до открытия Томсона был выполнен ряд интересных экспериментов, в которых другие исследователи изучали электрический ток в стеклянных трубках, наполненных газом при низких давлениях. Такие трубки, названные трубками Гейсслера по имени немецкого стеклодува Г. Гейсслера, который первым начал изготовлять их, испускали яркое свечение, будучи подключены к высоковольтной обмотке индукционной катушки.
Этими электрическими разрядами заинтересовался У. Крукс , который установил, что характер разряда в трубке меняется в зависимости от давления, и разряд полностью исчезает при высоком вакууме.
Более поздние исследования Ж. Перрена показали, что вызывающие свечение «катодные лучи» представляют собой отрицательно заряженные частицы, которые движутся прямолинейно, но могут отклоняться магнитным полем. Однако заряд и масса частиц оставались неизвестны и было неясно, одинаковы ли все отрицательные частицы.
Сущность
метода Томсона заключалась в том, что
все частицы, образующие катодные лучи,
тождественны друг другу и входят в
состав вещества.
Рис 16.1. Схема экспериментальной установки: 1– Катод, 2– Источник высокого напряжения, 2 – 2-е катушки, 3 – 2-е пластины конденсатора, 4– Экран, 5– Диафрагмы D, E.
С помощью разрядной трубки особого типа, изображенной на рис. 16.1, Томсон измерил скорость и отношение заряда к массе частиц катодных лучей, позднее названных электронами. Электроны вылетали из катода под действием высоковольтного разряда в трубке. Через диафрагмы D и E проходили только те из них, что летели вдоль оси трубки.
В нормальном режиме эти электроны попадали в центр люминесцентного экрана. (трубка Томсона была первой «электронно-лучевой трубкой» с экраном, предшественницей телевизионного кинескопа.) В трубке находилась также пара пластин электрического конденсатора, которые, если на них подавалось напряжение, могли отклонять электроны. Электрическая сила FE, действующая на заряд e со стороны электрического поля E, дается выражением
FE = eE (16.1).
Кроме того, в той же области трубки с помощью пары катушек с током могло создаваться магнитное поле, способное отклонять электроны в противоположном направлении. Сила FH, действующая со стороны магнитного поля H, пропорциональна напряженности поля, скорости частицы v и ее заряду e:
FH = Hev (16.2)
Томсон отрегулировал электрическое и магнитное поля так, чтобы полное отклонение электронов было равно нулю, т.е. электронный пучок вернулся в первоначальное положение. Поскольку в этом случае обе силы FE и FH равны, скорость электронов дается выражением
v = E/H (16.3)
Томсон установил, что эта скорость зависит от напряжения на трубке V и что кинетическая энергия электронов mv2/2 прямо пропорциональна этому напряжению, т.е. mv2/2 = eV. (Отсюда термин «электрон-вольт» для энергии, приобретаемой частицей с зарядом, равным заряду электрона при ускорении разностью потенциалов 1 В.) Комбинируя это уравнение с выражением для скорости электрона, он нашел отношение заряда к массе
(16.4).
Эти опыты позволили определить отношение e/m для электрона и дали приближенное значение заряда e.
Эксперименты Томсона показали, что электроны в электрических разрядах могут возникать из любого вещества. Поскольку все электроны одинаковы, элементы должны различаться лишь числом электронов. Кроме того, малая величина массы электронов указывала на то, что масса атома сосредоточена не в них.