
- •1. Лекция №1 4
- •8.1. Концепция измерения в неклассическом естествознании. 65
- •8.2. Концепция моделирования состояний 68
- •9.3. Целостность микросостояний. Особенность микросостояний системы тождественных частиц 83
- •11.2. Флуктуации и альтернативная корреляция между ними в микромире 98
- •1.Лекция №1
- •1.1.Место, цели и задачи дисциплины
- •1.2.Распределение учебных часов и материала
- •1.3.Понятия об измерениях
- •1.4.Вопросы к экзамену
- •39. Флуктуации и альтернативная корреляция между ними в микромире.
- •Лекция №2
- •2.1. Естествознание как трансдисциплинарная область научного знания.
- •2.2. Трансдисциплинарная идея моделирования природы.
- •2.3. Трансдисциплинарная идея единства объекта и его окружения.
- •2.4. Трансдисциплинарная идея пространственно-временных отношений в природе.
- •2.5. Трансдисциплинарная идея целостности природы.
- •2.6. Трансдисциплинарная идея экспериментальной достоверности.
- •2.7. Роль трансдисциплинарных идей в целостном понимании природы.
- •1. Дайте определение понятию “парадигма”.
- •2. Дайте определение понятию “трансдисциплинарность”.
- •3. Какими обстоятельствами ограничивается выбор модели в естественной науке?
- •4. Какие цели в науке имеет познавательный процесс?
- •5. Что такое методология?
- •6. Какую стратегию мышления порождает классическая стратегия мышления?
- •7. Сформулируйте две фундаментальные парадигмы естествознания.
- •Лекция №3.
- •3.1. Образ природы в классическом естествознании.
- •3.1.1. Концепция измерения в классическом естествознании.
- •3.1.2. Концепция единого пространства-времени.
- •3.1.3. Концепция моделирования объектов
- •3.1.4. Концепция контролируемого воздействия.
- •3.2. Образ природы в неклассическом естествознании
- •3.2.1. Концепция измерения в неклассическом естествознании
- •3.2.2. Концепция моделирования состояний
- •3.2.3. Целостность микросостояний. Особенность микросостояний системы тождественных частиц
- •3.2.4.Концепция макросостояний объектов
- •3.2.5. Концепция флуктуации и их корреляций
- •3.2.6. Флуктуации и альтернативная корреляция между ними в микромире
- •1. Дать определение термину «состояние физической системы».
- •2. Что называют косвенными измерениями?
- •3. Что называют системой единиц?
- •4. Дать определение термину «масса».
- •5. Назовите закон фундаментальной силы тяготения.
- •6. Почему пространство и время относительны?
- •7. Какие исходные утверждения лежат в основе специальной теории относительности Эйнштейна?
- •8. Как происходит передача взаимодействия с точки зрения физики?
- •9. Какие характеристики описывают контролируемое воздействие на частицу?
- •Лекция №4.
- •4. Концепция измерения в классическом естествознании. Классические измерительные системы. Проблема измерения в классическом естествознании. Единицы измерения и системы единиц.
- •4.1. Проблема измерения в классическом естествознании.
- •4.2. Единицы измерения и системы единиц.
- •4.3. Возникновение систем мер.
- •4.4.Возникновение и распространение метрической системы мер.
- •4.5. Эталоны.
- •4.6. Атомные часы.
- •1. В чем состоит смысл проведения серий повторных экспериментов в естествознании и как на практике обрабатываются результаты измерений?
- •2. Чем обусловлена точность измерений в рамках классических представлений?
- •3. Что такое эталон единицы измерения физических величин?
- •Лекция №5
- •5.1. Временные отношения в природе
- •5.2. Пространственные отношения в природе
- •5.3. Взаимосвязь Пространства и времени
- •5.4. Целостное описание пространства-времени
- •1. Какое первое свойство пространства и времени?
- •2. Назовите второе свойство пространства и времени.
- •3. Что называется пространственными координатами?
- •4. Что может выступать в роли системы отсчета (со)?
- •Лекция №6
- •6.1. Моделирование
- •6.2. Традиции атомизма и непрерывности в естествознании.
- •6.3. Фундаментальные физические модели объектов
- •6.4. Масса как универсальная характеристика инертности и гравитации
- •6.6. Полная энергия и полный момент как фундаментальные характеристики объекта
- •6.7. Роль фундаментальных законов сохранения в описании природы
- •1. Что такое «моделирование»?
- •Лекция №7.
- •Концепция контролируемого воздействия:
- •7.1. Воздействие и взаимодействие
- •7.2.Характеристики контролируемого воздействия на частицу
- •7.3. Фундаментальные силы
- •7.4. Механическая энергия и динамика частицы
- •7.5. Энергия взаимодействия в системе частиц
- •6.Опишите энергию взаимодействия в системе частиц.
- •Лекция №8.
- •8.1. Концепция измерения в неклассическом естествознании.
- •8.2. Концепция моделирования состояний
- •8.2.1. Неклассические представления о характеристиках объектов и состояний
- •8.2.2. Фундаментальные модели неклассической физики
- •1. Почему с неклассической точки зрения прибор оказывается неидеальным каналом связи между экспериментатором и исследуемым объектом?
- •3. Каким понятием описывается макроскопическая обстановка, в которой находится исследуемый объект:
- •Лекция №9.
- •9.1. Ограничение воздействия на микроуровне как фундаментальный закон природы
- •9.2. Микросостояние одной микрочастицы.
- •9.3. Целостность микросостояний. Особенность микросостояний системы тождественных частиц
- •10. Что возникает в результате аннигиляции электрона и его античастицы?
- •11. Что называют бозонами?
- •12. Что представляет собой материя на макроуровне?
- •13. Что называют фермионами?
- •Лекция №10.
- •10.1. Тепловое равновесие как макросостояние.
- •10.2. Детерминированное и стохастическое движения. Ограничение воздействия на макроуровне как фундаментальный закон природы
- •10.3. Макропараметры как характеристики объектов и их макросостояний в тепловом равновесии
- •10.4. Два способа описания природы на макроуровне.
- •Лекция №11.
- •11.1. Флуктуации и их роль в описании природы
- •11.2. Флуктуации и альтернативная корреляция между ними в микромире
- •11.3. Флуктуации и неальтернативная корреляция между ними в макромире
- •11.4. Универсальные корреляции между флуктуациями в неклассической физике.
- •Лекция №12.
- •12. Физические принципы создания современной эталонной базы. Использование явления сверхпроводимости.
- •12.1. Свойство сверхпроводимости
- •12.2. Изотопический эффект
- •12.4 Высокотемпературная сверхпроводимость
- •6. Назовите известные теоретические модели высокотемпературной сверхпроводимости.
- •7. Какое промышленное применение находит сверхпроводимость?
- •Лекция №13.
- •13. Явление Зеемана. Явление Джозефсона.
- •13.1. Эффект Зеемана
- •13.2. Явление Джозефсона.
- •5. Эффекта Джозефсона применяется:
- •Лекция №14.
- •14. Явление Мессбауэра. Другие эффекты квантовой физики
- •14.1. Краткая история жизни знаменитого ученого. Научные достижения
- •14.2. Предыстория вопроса
- •14.3. Открытие Мёссбауэра
- •14.4. Общие применения метода
- •14.5. Применение эффекта Мессбаура для изучения свойств поверхности и объема кристаллов
- •14.6. Химические применения метода
- •14.7. Выводы
- •Лекция №15.
- •15.1.Общие сведения.
- •15.2. Объяснение эффекта Холла с помощью электронной теории
- •15.3. Эффект Холла в ферромагнетиках.
- •15.4. Эффект Холла в полупроводниках
- •15.5. Эффект Холла на инерционных электронах в полупроводниках
- •15.6. Датчик эдс Холла
- •1. Что такое эффект Холла?
- •2. Дайте объяснение эффекта Холла с помощью электронной теории.
- •3. Опишите эффект Холла в ферромагнетиках.
- •4. Опишите эффект Холла в полупроводниках.
- •5. Опишите эффект Холла в инерционных электронах в полупроводниках.
- •6. Что такое датчик эдс Холла?
- •Лекция №16.
- •16. Измерение абсолютного заряда электрона и его удельного заряда. Опыт Милликена. Метод Томсона. Метод магнитной фокусировки Буша.
- •16.1. Инерционный метод измерения заряда. История открытия электрона
- •16.2. Метод магнитной фокусировки Буша
- •16.3. Опыт Милликена
- •1. В чем сущность метода Томсона?
- •2. Трубка Томсона?
- •3. Вывод формулы отношение заряда к массе частицы?
- •4. В чем основная задача электронной и ионной оптики? и как их принято называть?
- •5. Когда был открыт «метод магнитной фокусировки»?
- •6. В чем суть «метода магнитной фокусировки»?
- •7. Какие требования необходимо соблюдать при выполнении опыта?
- •8. Определение элементарного заряда посредством вычислительного эксперимента?
- •9. Вывод формулы заряда капли через скорость падения капли?
- •10. Современное значение "атома" электричества?
- •Лекция №17.
- •17.1. Шумы, обусловленные дискретностью вещества. Помехи
- •17.2. Дробовый эффект
- •17.3.Критерий устойчивости Найквиста. Формула Найквиста
- •17.4. Естественные пределы точности измерений
- •17.5. Методы повышения точности средств измерений и выполнения измерений
- •17.6. Фундаментальный источник погрешностей измерений. Основные понятия и виды погрешностей
- •17.7. Броуновское движение
- •1. Какие виды шумов вы знаете?
- •2. Как и где используются Шумы Найквиста?
- •3. Что называется Броуновским движением?
- •4. Что такое диффузия?
- •5. В чем различие между диффузией и броуновским движением?
- •6. Что такое точность измерений?
- •7. Какие виды погрешности вы знаете?
- •8. В чем заключается Дробовый эффект?
- •9. Дайте определение помехе.
- •Ответы на вопросы:
6.1. Моделирование
Моделирование - исследование каких-либо явлений, процессов или систем объектов путем построения и изучения их моделей. Моделирование - одна из основных категорий теорий познания. На идее моделирования по существу базируется любой метод научного исследования - как теоретический. В зависимости от характера используемых в научном исследовании моделей различают несколько видов моделирования:
Мысленное (идеальное) моделирование: К этому виду моделирования относятся самые различные мысленные представления в форме тех или иных воображаемых моделей.
Физическое моделирование. Оно характеризуется физическим подобием между моделью и оригиналом и имеет целью воспроизведение в модели процессов, свойственных оригиналу. По результатам исследования тех или иных физических свойств модели судят о явлениях, происходящих (или могущих произойти) в так называемых «натуральных условиях». Пренебрежение результатами таких модельных исследований может иметь тяжелые последствия.
Символическое (знаковое) моделирование. Оно связано с условно-знаковым представлением каких-то свойств, отношений объекта-оригинала. К символическим (знаковым) моделям относятся разнообразные топологические и графовые представления (в виде графиков, номограмм, схем и т. п.) исследуемых объектов. важной разновидностью символического (знакового) моделирования является математическое моделирование. Символический язык математики позволяет выражать свойства, стороны, отношения объектов и явлений самой различной природы. Взаимосвязи между различными величинами, описывающими функционирование такого объекта или явления, могут быть представлены соответствующими уравнениями (дифференциальными, интегральными, интегро-дифференциальными, алгебраическими) и их системами.
Численное моделирование на компьютере. Эта разновидность моделирования основывается на ранее созданной математической модели изучаемого объекта или явления и применяется в случаях больших объемов вычислений, необходимых для исследования данной модели.
6.2. Традиции атомизма и непрерывности в естествознании.
В истории изучения природы можно выделить два этапа: донаучный и научный.
Донаучный, или натурфилософский, охватывает период от античности до становления экспериментального естествознания в XVI-ХVII вв. В этот период учения о природе носили чисто натурфилософский характер: наблюдаемые природные явления объяснялись на основе умозрительных философских принципов. Наиболее значимой для последующего развития естественных наук была концепция дискретного строения материи – атомизм, согласно которому все тела состоят из атомов – мельчайших в мире частиц.
Исходными началами в атомизме выступали атомы и пустота. Механическая программа описания природы, впервые выдвинутая в античном атомизме, наиболее полно реализовалась в классической механике, со становления которой начинается научный этап изучения природы.
Формирование научных взглядов на строение материи относится к XVI в., когда Г. Галилеем была заложена основа первой в истории науки физической картины мира – механической. Он не просто обосновал гелиоцентрическую систему Н. Коперника и открыл закон инерции, а разработал методологию нового способа описания природы – научно-теоретического. Суть его заключалась в том, что выделялись только некоторые физические и геометрические характеристики, которые становились предметом научного исследования.
В рамках механической картины мира, разработанной И. Ньютоном и его последователями, сложилась дискретная (корпускулярная) модель реальности. Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц – атомов или корпускул. Атомы очень прочны, неделимы, непроницаемы, характеризуются наличием массы и веса.
В основу механической картины мира был положен ряд принципов. Во-первых, мир в этой картине строился по законам механики Ньютона, применимой к любым телам, мелким и крупным. Во-вторых, неявно допускалось, что между объектами микро- и макромира нет принципиальной разницы. В-третьих, предполагалось, что какое-то развитие, качественное изменение в природе отсутствует. В-четвертых, все причинно – следственные связи считались однозначными, предопределенными.
К началу XX века многим физикам стало ясно, что реальная природа не может быть всесторонне описана в рамках односторонних либо механической, либо электродинамической картин мира. Необходимо было выдвинуть принципиально новые идеи, которые позволили бы объединить две системы столь противоположных взглядов на природу в некой общей теории. Важную роль в подготовке новых идей сыграл А. Пуанкаре, первым высказавший идею относительности всех явлений природы. На заключительном этапе решающий вклад в создание целостной теории внес А. Эйнштейн, сформулировавший в 1905г. фундаментальную теорию релятивистской классической физики.
В рамках этой теории материя существует в двух видах: дискретного вещества и непрерывного поля.
Вещество и поле различаются как корпускулярные и волновые сущности: вещество дискретно и состоит из атомов, а поле непрерывно.
Вещество и поле различаются по своим физическим характеристикам: частицы вещества обладают массой покоя, а поле – нет.
Вещество и поле различаются по степени проницаемости: вещество мало проницаемо, а поле, наоборот, полностью проницаемо.
Скорость распространения поля равна скорости света, а скорость движения частиц вещества меньше ее на много порядков.
Наконец, в этой теории было достигнуто объективное описание природы, а свойства пространства и времени удалось связать со свойствами материи. Установленные в ней законы природы не зависят от выбора системы отсчета, а движение материальных объектов происходит в целостном пространстве – времени.