
- •Э.А. Гюннер, в.Ф. Шульгин общая химия
- •Введение Предмет и структура химии
- •1. Химическая атомистика
- •1.1. Основные положения и понятия химической атомистики
- •1.2. Стехиометрические законы химии
- •1.3. Методы определения молекулярных масс и атомных масс
- •Методы определения молекулярных масс.
- •1.3.2. Методы определения атомных масс.
- •2. Основы теории строения атома
- •2.1. Предпосылки возникновения квантово-механической теории
- •2.2. Постулаты квантово-механической теории
- •2.3. Волновая функция. Уравнение Шредингера
- •2.4. Атом водорода. Одноэлектронные атомарные ионы
- •2.5. Многоэлектронные атомы
- •3. Периодический закон д.И. Менделеева в свете квантово-механических представлений
- •3.1. Современная формулировка Периодического закона
- •3.2. Структура периодической системы элементов: периоды, группы, подгруппы элементов
- •3.3. Закономерности изменения свойств элементов в периодах и подгруппах периодической системы
- •3.3.1. Эффективный заряд ядра.
- •3.3.2. Атомные радиусы.
- •3.3.3. Энергия ионизации.
- •3.3.4. Сродство к электрону.
- •3.3.5. Электроотрицательность.
- •3.3.6. Степени окисления элементов.
- •3.4. Элементы-аналоги. Виды аналогии в периодической системе элементов
- •3.4.1. Групповая аналогия.
- •3.4.2. Типовая аналогия.
- •3.4.3. Электронная аналогия.
- •VI группа I группа
- •3.4.4. Слоевая аналогия.
- •3.4.5. Контракционная аналогия (шринк-аналогия).
- •3.4.6. Горизонтальная аналогия.
- •3.4.7. Диагональная аналогия.
- •4. Атомное ядро. Радиоактивность
- •4.1. Элементарные частицы
- •4.2. Теория строения атомных ядер
- •4.3. Ядерные реакции
- •4.4.Радиоактивность. Типы радиоактивного распада
- •4.5. Законы радиоактивного распада
- •4.6. Естественная радиоактивность. Радиоактивные ряды. Радиоактивное равновесие
- •4.7. Искусственная радиоактивность. Изотопная индикация
- •4.8. Новые химические элементы
- •4.9. Эволюция элементов во Вселенной
- •5. Химическая связь и строение молекул
- •5.1. Химическая связь. Параметры химической связи. Валентность
- •5.2. Метод валентных связей
- •5.2.1. Основные принципы метода валентных связей.
- •5.2.2. Насыщаемость ковалентной связи. Механизм образования двухцентровой связи.
- •5.2.3. Направленность ковалентной связи. Гибридизация электронных орбиталей.
- •5.2.4. Кратность ковалентной связи.
- •5.2.5. Делокализованные многоцентровые связи. Теория резонанса.
- •5.2.6. Предсказание геометрической формы молекул.
- •5.2.7. Неполярные и полярные связи. Типы ковалентных молекул.
- •5.2.8. Недостатки метода валентных связей.
- •5.3. Метод молекулярных орбиталей
- •5.3.1. Основные принципы метода молекулярных орбиталей.
- •5.3.2. Применение метода молекулярных орбиталей.
- •5.3.2.1. Двухатомные молекулы.
- •5.3.2.2. Молекулы, состоящие из трех и более атомов.
- •5.4. Ионная связь
- •5.4.1. Особенности ионной связи. Свойства ионных соединений.
- •5.4.2. Типы кристаллических решеток ионных соединений. Ионные радиусы.
- •5.3.3. Энергия ионной кристаллической решетки.
- •5.4.4. Поляризация ионов.
- •5.5. Металлическая связь. Зонная теория кристаллов
- •5.6. Межмолекулярное взаимодействие
- •5.7. Водородная связь
- •6. Координационные соединения
- •6.1. Координационные соединения. Основные положения координационной теории
- •6.2. Классификация координационных соединений
- •6.3. Номенклатура координационных соединений
- •6.4. Изомерия координационных соединений
- •6.5. Химическая связь в координационных соединениях
- •6.5.1. Метод валентных связей
- •6.2. Теория кристаллического поля
- •6.3. Метод молекулярных орбиталей
- •6.7. Реакции внешнесферного и внутрисферного замещения. Принцип транс-влияния
- •7. Агрегатные состояния вещества
- •7.1. Типы агрегатного состояния
- •7.2. Твердое состояние вещества
- •7.2.1. Кристаллическое состояние.
- •7.2.2. Аморфное состояние.
- •7.3. Жидкое состояние вещества
- •7.4. Газообразное состояние вещества
- •7.5. Плазма
- •8. Теория химических процессов
- •8.1. Предмет и основные понятия теории химических процессов
- •8.2. Основы химической термодинамики
- •8.2.1. Термодинамические функции. Внутренняя энергия и первый закон термодинамики. Энтальпия.
- •8.2.2. Термохимия. Закон Гесса.
- •8.2.3. Энтропия. Второй и третий законы термодинамики.
- •8.2.4. Свободная энергия Гиббса. Направление химического процесса.
- •8. Химическая кинетика
- •8.3.1. Предмет химической кинетики. Скорость химической реакции. Энергия активации.
- •8.3.2. Факторы, влияющие на скорость химической реакции. Катализаторы и катализ.
- •8.3.3. Кинетическая классификация реакций.Молекулярность и порядок реакции. Механизмы реакций.
- •8.3.4. Некоторые типы многостадийных реакций.
- •8.4. Химическое равновесие
- •8.4.1. Обратимые и необратимые реакции. Состояние химического равновесия.
- •8.4.2. Смещение химического равновесия.
- •9. Растворы
- •9.1. Общая характеристика растворов
- •9.2. Разбавленные растворы неэлектролитов. Коллигативные свойства растворов
- •9.3. Растворы электролитов
- •9.3.1. Электролиты. Теория электролитической диссоциации (ионизации).
- •9.3.2. Теория растворов слабых электролитов.
- •9.3.2.1. Степень ионизации слабых электролитов и методы ее определения.
- •9.3.2.2. Равновесия в растворах слабых электролитов.
- •6,5·10-4 Моль/л
- •9.3.3. Теория сильных электролитов.
- •9.3.4. Обменные реакции в растворах электролитов.
- •9.3.4.1. Типы обменных реакций в растворах электролитов.
- •9.3.4.2. Гидролиз солей.
- •9.3.5. Теории кислот и оснований.
- •9.3.6. Окислительно-восстановительные реакции в растворах.
- •9.3.6.1.Общая характеристика окислительно-восстановительных реакций.
- •9.3.6.2. Составление уравнений окислительно-восстановительных реакций.
- •9.3.6.3. Электродные потенциалы. Направление окислительно-восстановительных реакций. Гальванический элемент.
- •9.3.6.4. Электролиз.
- •9.4. Коллоидные растворы
- •9.4.1. Общая характеристика коллоидных растворов и методы их получения.
- •9.4.2. Строение коллоидных частиц.
- •9.5. Твердые растворы
- •Список рекомендуемой литературы
3.3.2. Атомные радиусы.
Поскольку атом не имеет определенных размеров, атомные радиусы представляют собой в известной мере условные величины. Различают орбитальные и эффективные атомные радиусы.
Орбитальные радиусы (rорб) - это расстояния от ядра до главного максимума функции радиального распределения электронной плотности. Эти величины рассчитаны квантово-механическими методами для всех элементов периодической системы.
Эффективные радиусы (rэфф), в отличие от орбитальных, определяют экспериментально из значений межъядерных расстояний в молекулах или в кристаллах. При этом предполагается, что межъядерное расстояние равно сумме эффективных радиусов соседних атомов (одинаковых для простых веществ, разных - для сложных). Совершенно очевидно, что эффективные атомные радиусы в этом случае будут зависеть не только от природы элемента, но и от типа химической связи в молекуле или в кристалле. Соответственно различают ковалентные, ионные, металлические и ван-дер-ваальсовские радиусы, отвечающие агрегатам с ковалентной, ионной, металлической связью и с межмолекулярным взаимодействием (например, кристаллам благородных газов). Естественно, что тип связи в кристалле весьма сильно влияет на значение эффективного радиуса. Поэтому при сопоставлении элементов с разными типами связи в кристаллах простых веществ рационально использовать орбитальные радиусы, не зависящие от типа связи. Если в рассматриваемых совокупностях элементов тип связи одинаков (например, для металлов В-подгрупп), сопоставление эффективных радиусов также позволяет выносить весьма ценные заключения.
На атомные радиусы элементов оказывают влияние следующие факторы:
1. Эффективный заряд ядра. Увеличение Zэфф при прочих равных условиях усиливает притяжение валентных электронов к ядру и, следовательно, уменьшает радиус.
2. Число энергетических уровней, заполненных электронами. Увеличение числа электронных слоев атома способствует увеличению его радиуса.
3. Электронная конфигурация атома. Заполнение валентными электронами соответствующих энергетических подуровней делает атом более компактным, уменьшая его радиус. Можно ожидать, что наибольшее влияние на радиус будет оказывать образование электронных структур ns2, np6, nd10, nf14 и, в меньшей степени, np3, nd5, nf7. С другой стороны, заполнение электронами внутренних d- и f-подуровней благоприятствует проникновению валентных электронов к ядру. Образующиеся при этом d10 и f14 экраны как бы "придавливают" проникающий под них электрон к ядру, понижая его энергию и уменьшая радиус атома.
Проанализируем закономерности изменения атомных радиусов в периодической системе элементов. В периодах число электронных слое не изменяется, а эффективный заряд ядер растет. Можно ожидать, что в периодах слева направо будет наблюдаться тенденция к уменьшению атомных радиусов. Действительно, как следует из табл. 5, для элементов II периода по ряду Li - Ne орбитальные радиусы атомов последовательно понижаются от 159 пм у лития до 35 пм у неона без каких-либо нарушений монотонности. Несколько сложнее изменение атомных радиусов в больших периодах. Так, в IV периоде (табл. 5) атомные радиусы монотонно уменьшаются по рядам s-элементов (К - Са) и d-элементов (Sc - Zn) с незначительными отклонениями у хрома и меди, возможно, обусловленными провалом электрона. Далее наблюдается нарушение монотонности: радиус атома галлия (электронная формула [Ar]183d10 4s24p1) значительно больше атомного радиуса предшествующего ему цинка (электронная формула [Ar]183d10 4s2). Это явление можно объяснить, с одной стороны, завершением формирования у цинка подуровня 3d10, а с другой - появлением у галлия структуры 4s24p1, способствующей увеличению радиуса атома. В ряду Ga - Kr радиусы атомов р-элементов монотонно уменьшаются. По аналогичной схеме изменяются радиусы атомов элементов V периода.
Для VI периода наблюдается резкое уменьшение радиуса при переходе от элемента IIIB-подгруппы к элементу IVB-подгруппы: если в V периоде орбитальный радиус иттрия отличается от орбитального радиуса циркония на 10 пм, то для лантана и гафния разность атомных радиусов составляет 44 пм. Это явление связано с тем, что в IV периоде между лантаном и гафнием "вклиниваются" 14 элементов - лантаноидов, по ряду которых атомные радиусы уменьшаются от 198 пм (церий) до 155 пм (лютеций). Уменьшение атомных радиусов в ряду лантаноидов называют лантаноидным сжатием или лантаноидной контракцией. Лантаноидная контракция имеет большое значение для объяснения закономерностей изменения свойств элементов.
Рассмотрим характер изменения атомных радиусов в подгруппах периодической системы. При перемещении по подгруппе сверху вниз растет число электронных слоев, на которых распределяются электроны, что должно сопровождаться увеличением атомных радиусов. В то же время возрастание эффективного заряда ядер в подгруппах способствует уменьшению радиусов атомов, аналогичное влияние на радиус оказывает также и формирование d10- и f14-экранов. В А-подгруппах периодической системы число электронных слоев является определяющим фактором: в подгруппах s- и р-элементов наблюдается явная тенденция к увеличению атомных радиусов с возрастанием порядкового номера элемента. Так, в подгруппе VIA (табл. 6.) атомные радиусы монотонно возрастают от кислорода (rорб = 45 пм) до полония (rорб = 121 пм). Несколько более сложный характер изменения атомных радиусов имеет место в подгруппе IVА (табл. 6). В этой подгруппе переход от углерода к кремнию сопровождается значительным увеличением атомного радиуса, тогда как при переходе от кремния к германию эта характеристика атома почти не изменяется; радиус атома олова, следующего элемента IVА-подгруппы, существенно больше радиуса атома германия, тогда как при переходе от олова к свинцу атомный радиус не только не увеличивается, но даже несколько уменьшается. Наблюдаемая в IV-подгруппе вторичная периодичность находит достаточно убедительное объяснение. В атоме углерода электроны образуют два электронных слоя, а в атоме кремния - три, вследствие чего радиус атома кремния должен быть больше радиуса атома углерода. Для атома германия увеличение числа электронных слоев до четырех должно способствовать увеличению атомного радиуса; однако в атоме германия заполнен 3d-подуровень. Эти два эффекта компенсируют друг друга, результатом чего является близость радиусов атомов кремния и германия. Для атома олова число электронных слоев возрастает до пяти, а новые типы электронных экранов не образуются (экран 4d10 аналогичен 3d10), поэтому радиус атома олова больше радиуса атома германия. В атоме свинца формируется шестой электронный слой, но в то же время появляется 4f14-экран, что видимо, влияет на размеры атома сильнее, чем наличие нового электронного слоя; в результате радиус атома свинца несколько меньше радиуса атома олова.
Для В-подгрупп периодической системы на характер изменения атомных радиусов существенное влияние оказывает лантаноидная контракция, приводящая к уменьшению атомного радиуса третьего элемента подгруппы, относящегося к VI периоду, сравнительно с ожидаемой величиной. В табл. 7 приведены орбитальные и металлические радиусы элементов подгрупп IB и IVB. Для обеих подгрупп переход от первого элемента ко второму сопровождается увеличением атомного радиуса, тогда как при переходе от второго элемента к третьему металлические радиусы практически не изменяются, а орбитальные даже уменьшаются.
Заметим, что в случае подгруппы IIIB, для которой лантаноидная контракция не наблюдается, атомные радиусы изменяются так же, как и в А-погруппах (для скандия, иттрия и лантана орбитальные радиусы равны 157, 169 и 192 пм).