Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
НиЛ курсовая 3 курс 2019 Cape Town - Barcelona.docx
Скачиваний:
59
Добавлен:
26.10.2019
Размер:
5.22 Mб
Скачать

6.3. Shallow water.

Shallow water subsidence

Q = 2 * ((CB * V2)/100) (6.9)

Q – maximum theoretical possible hull subsidence (m);

CB – coefficient of total completeness of the submerged part of the hull;

V – speed of vessel (kn)

CB = D / (𝜸 * L * B * T) (6.10)

D – deadweight loaded (t)

𝜸 = 1.025 – density of sea water (g/sm3);

L – length of the ship between perpendiculars (m);

B – breadth of the ship (m);

T – draught to summer mark (m)

Shallow water subsidence for Full Ahead Speed (10.3 kn)

CB = 11559 / (1.025 * 131 * 22.46 * 6.114) = 0.626 (6.11)

Q = 2 * ((CB * V2)/100) = 2 * ((0.626 * 10.32)/100) = 1.328 (6.12)

Shallow water subsidence for Half Ahead Speed (8.2 kn)

Q = 2 * ((CB * V2)/100) = 2 * ((0.626 * 8.22)/100) = 0.841 (6.13)

Shallow water subsidence for Slow Ahead Speed (6.2 kn)

Q = 2 * ((CB * V2)/100) = 2 * ((0.626 * 6.22)/100) = 0.481 (6.14)

Shallow water subsidence for Dead Slow Ahead Speed (4.1 kn)

Q = 2 * ((CB * V2)/100) = 2 * ((0.626 * 4.12)/100) = 0.210 (6.15)

6.4. Tidal streams.

Pic. 6.2 – Cape Town Tide Table

Pic. 6.3 – Cape Town Tide Chart

Pic. 6.4 – Barcelona Tide Table

Pic. 6.5 – Barcelona Tide Chart

6.5. Under keel clearance and safe speed on shallow waters.

UKC must be > 1.

UKC = HM – TC (6.16)

HM – depth of water;

TC – draught of vessel.

HM = H0 + ∆h (6.17)

H0 – chart datum;

∆h – tidal height.

TC = T + Q + ∆TB (6.18)

T – draught of vessel on deep water;

Q – maximum theoretical possible hull subsidence;

∆TB – increase of draught due to swell.

∆TB = 0.6 * hB (6.19)

hB – maximum height of swell.

UKC Cape Town

∆TB = 0.6 * hB = 0.6 * 2 = 1.2 (6.20)

TC = T + Q + ∆TB = 6.114 + 1.328 + 1.2 = 8.642 (6.21)

HM = H0 + ∆h = 15.7 + 0.4 = 16.1 (6.22)

UKC = HM – TC = 16.1 – 8.642 = 7.458 (6.23)

UKC Barcelona

∆TB = 0.6 * hB = 0.6 * 1 = 0.6 (6.24)

TC = T + Q + ∆TB = 6.114 + 1.328 + 0.6 = 8.042 (6.25)

HM = H0 + ∆h = 10.3 + 0.4 = 10.7 (6.26)

UKC = HM – TC = 10.7 – 8.042 = 2.658 (6.27)

6.6. Assessment of the accuracy of observations and the choice of method for determining the position of the vessel.

Determining the position by 2 bearings

R95% = 0.06 * DAV (nm) (6.28)

DAV – average distance to landmarks.

Determining the position by 2 distances

R95% = 0.03 * SC (nm) (6.29)

SC – scale of Radar

Determining the position by 1 bearing and 1 distance

R95% = 0.04 * SC (nm) (6.30)

Pic. 6.6 – Passage through Strait of Gibraltar

Table 6.4 – Determine the position by 2 bearings

Waypoint

Landmark

D, nm

Landmark

D, nm

DAV, nm

R 95%, nm

016

Punto Malabata

6,1

Punta Maroqqui

6,9

6,5

0,39

017

Punta Maroqqui

5,3

Punto Cires

7,5

6,4

0,38

018

Punta Maroqqui

4,5

Punto Cires

5,4

5

0,3

019

Punta Maroqqui

4,9

Punto Cires

3,5

4,2

0,25

020

Punta Maroqqui

6,3

Punto Cires

2,8

4,6

0,28

021

Punto Carnero

6,8

Punto Cires

3,9

5,4

0,32

022

Punto Carnero

6,1

Monte Hacho

7,6

6,9

0,41

023

Punto Carnero

6,3

Monte Hacho

6,6

6,5

0,39

024

Victoria Tower

6,7

Monte Hacho

6,4

6,6

0,4

Average R 95%

0,35

Table 6.5 – Determine the position by 2 distances

Waypoint

Landmark

D, nm

Landmark

D, nm

SC

R 95%, nm

016

Punto Malabata

6,1

Punta Maroqqui

6,9

7

0,21

017

Punta Maroqqui

5,3

Punto Cires

7,5

8

0,24

018

Punta Maroqqui

4,5

Punto Cires

5,4

6

0,18

019

Punta Maroqqui

4,9

Punto Cires

3,5

5

0,15

020

Punta Maroqqui

6,3

Punto Cires

2,8

7

0,21

021

Punto Carnero

6,8

Punto Cires

3,9

7

0,21

022

Punto Carnero

6,1

Monte Hacho

7,6

8

0,24

023

Punto Carnero

6,3

Monte Hacho

6,6

7

0,21

024

Victoria Tower

6,7

Monte Hacho

6,4

7

0,21

Average R 95%

0,21

Table 6.6 – Determine the position by 1 bearing and 1 distance

Waypoint

Landmark

D, nm

SC

R 95%, nm

016

Punto Malabata

6,1

7

0,28

017

Punta Maroqqui

5,3

6

0,24

018

Punta Maroqqui

4,5

5

0,2

019

Punto Cires

3,5

4

0,16

020

Punto Cires

2,8

3

0,12

021

Punto Cires

3,9

4

0,16

022

Punto Carnero

6,1

7

0,28

023

Punto Carnero

6,3

7

0,28

024

Monte Hacho

6,4

7

0,28

Average R 95%

0,22

Analysis of the tables shows that the spare method of observations at a selected navigation line is optimal according to the accuracy criteria is determining of the position by 2 distances.