Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

125 Кібербезпека / Магістр (вступні питання)

.pdf
Скачиваний:
107
Добавлен:
23.10.2019
Размер:
3.84 Mб
Скачать

машин різних поколінь полягає в елементній базі, логічній архітектурі і програмному забезпеченні, крім того, вони розрізняються по швидкодії,

оперативній пам'яті, способам введення і виведення інформації. I покоління (до 1955 р.)

Всі ЕОМ I-го покоління були зроблені на основі електронних ламп, що робило їх ненадійними - лампи доводилося часто міняти. Ці комп'ютери були величезними, незручними і дуже дорогими машинами, які могли придбати тільки крупні корпорації і уряди. Лампи споживали величезну кількість електроенергії і виділяли багато тепла. Притому для кожної машини використовувалася своя мова програмування. Набір команд був невеликим,

схема арифметико-логічного пристрою і пристрою управління достатньо проста, програмне забезпечення практично було відсутнє. Показники об'єму оперативної пам'яті і швидкодії були низькими. Для введення-виводу використовувалися перфострічки, перфокарти, магнітні стрічки і друкуючі пристрої, оперативні пристрої, що запам'ятовують, були реалізовані на основі ртутних ліній затримки електроннолучевих трубок. Ці незручності почали долати шляхом інтенсивної розробки засобів автоматизації програмування,

створення систем обслуговуючих програм, що спрощують роботу на машині і збільшують ефективність її використання. Це, у свою чергу, зажадало значних змін в структурі комп'ютерів, направлених на те, щоб наблизити її до вимог, що виникли з досвіду експлуатації комп'ютерів.

Основні комп'ютери першого покоління: 1. ЕНІАК.

У 1946 р. американські інженер-електронщик Дж. П. Эккерт і фізик Дж.У. Моучлі в Пенсільванському університеті сконструювали, за замовленням військового відомства США, першу електронно-обчислювальну машину -

―Еніак‖ (Electronic Numerical Integrator and Computer), яка призначалася для вирішення завдань балістики. Вона працювала в тисячу разів швидше, ніж

"Марк-1", виконуючи за одну секунду 300 множень або 5000 складань багаторозрядних чисел. Розміри: 30 м. в довжину, об'єм - 85 м3., вага - 30 тонн.

Використовувалося близько 20000 електронних ламп и 1500 реле. Потужність її була до 150 квт.

2. ЕДСАК.

Перша машина з програмою, що зберігається, - ‖Едсак‖ - була створена в Кембріджському університеті (Англія) в 1949 р. Вона мала пристрій, що запам'ятовував, на 512 ртутних лініях затримки. Час виконання складання був

0,07 мс, множення - 8,5 мс.

3. МЭСМ.

У 1948 році академік Сергій Олексійович Лебедев запропонував проект першої на континенті Європи ЕОМ - Малої електронної рахунково-вирішальної машини (МЕСМ). У 1951р. МЕСМ офіційно вводиться в експлуатацію, на ній регулярно вирішуються обчислювальні завдання. Машина оперувала з

20розрядними двійковими кодами з швидкодією 50 операцій в секунду, мала оперативну пам'ять в 100 осередків на електронних лампах.

4. UNIVAC-1. (Англія)

У1951 р. була створена машина ―Юнівак‖(UNIVAC) - перший серійний комп'ютер з програмою, що зберігається. У цій машині вперше була використана магнітна стрічка для запису і зберігання інформації.

5. БЕСМ-2

У1952 році вводиться в експлуатацію БЕСМ-2(велика електронна рахункова машина) з швидкодією близько 10 тис. операцій в секунду над 39-

розрядними двійковими числами. Оперативна пам'ять на електронно-

акустичних лініях затримки - 1024 слова, потім на електронно-променевих трубках і пізніше на феритових сердечниках.

II покоління (1958-1964рр.).

У 1958 р. в ЕОМ були застосовані напівпровідникові транзистори,

винайдені в 1948 р. Уїльямом Шоклі, вони були надійніші, довговічніші, менші,

мали змогу виконати значно складніші обчислення, володіли великою оперативною пам'яттю. 1 транзистор здатний був замінити ~ 40 електронних ламп і працювати з більшою швидкістю. У II-ому поколінні комп'ютерів дискретні транзисторні логічні елементи витіснили електронні лампи. Як носії

інформації використовувалися магнітні стрічки ("БЕСМ-6", "Мінськ-2","Урал-

14") і магнітні сердечники, з'явилися високопродуктивні пристрої для роботи з магнітними стрічками, магнітні барабани і перші магнітні диски.

Як програмне забезпечення стали використовувати мови програмування високого рівня, були написані спеціальні транслятори з цих мов на мову машинних команд. Для прискорення обчислень в цих машинах було реалізовано деяке перекриття команд: подальша команда починала виконуватися до закінчення попередньої. З'явився широкий набір бібліотечних програм для вирішення різноманітних математичних завдань. З'явилися моніторні системи, керівники режиму трансляції і виконання програм. З

моніторних систем надалі виросли сучасні операційні системи. Машинам другого покоління була властива програмна несумісність, яка утрудняла організацію крупних інформаційних систем. Тому в середині 60-х років намітився перехід до створення комп'ютерів, програмно сумісних і побудованих на мікроелектронній технологічній базі.

III покоління (1964-1972рр).

У 1960 р. з'явилися перші інтегральні схеми (ІС), які набули широкого поширення у зв'язку з малими розмірами, але величезними можливостями. ІС -

це кремнієвий кристал, площа якого приблизно 10 мм2. ІС здатна замінити десятки тисяч транзисторів. А комп'ютер з використанням ІС досягає продуктивності в 10 млн. операцій в секунду.

У 1964 році, фірма IBM оголосила про створення шести моделей сімейства IBM 360 (System 360), що стали першими комп'ютерами третього покоління. Машини третього покоління — це сімейства машин з єдиною архітектурою, тобто програмно сумісних. Як елементна база в них використовуються інтегральні схеми, які також називаються мікросхемами.

Машини третього покоління мають розвинені операційні системи. Вони володіють можливостями мультипрограмування, тобто одночасного виконання декількох програм. Багато завдань управління пам'яттю, пристроями і ресурсами стала брати на себе операційна система або ж безпосередньо сама машина.

Приклади машин третього покоління — сімейства IBM-360, IBM-370,

ЄС ЕОМ (Єдина система ЕОМ), СМ ЕОМ (Сімейство малих ЕОМ) і ін.

Швидкодія машин усередині сімейства змінюється від декількох десятків тисяч до мільйонів операцій в секунду. Ємкість оперативної пам'яті досягає декількох сотень тисяч слів.

IV покоління (з 1972 р. по теперішній час).

Четверте покоління — це теперішнє покоління комп'ютерної техніки,

розроблене після 1970 року. Вперше стали застосовуватися великі інтегральні схеми (ВІС), які по потужності приблизно відповідали 1000 ІС. Це привело до зниження вартості виробництва комп'ютерів. Швидкодія таких машин складає тисячі мільйонів операцій в секунду. Ємкість ОЗУ зросла до 500 млн. двійкових розрядів. У таких машинах одночасно виконуються декілька команд над декількома наборами операндів. C точки зору структури машини цього покоління є багатопроцесорними і багатомашинними комплексами, що працюють на загальну пам'ять і загальне поле зовнішніх пристроїв. Ємкість оперативної пам'яті приблизно 1 - 64 Мбайт.

Розповсюдження персональних комп'ютерів до кінця 70-х років привело до деякого зниження попиту на великі ЕОМ і МІНІ-ЕОМ. Це стало предметом серйозного неспокою фірми IBM (International Business Machines Corporation)

— провідній компанії по виробництву великих ЕОМ, і в 1979 р. фірма IBM

вирішила спробувати свої сили на ринку персональних комп'ютерів, створивши перші персональні комп'ютериIBM РС.

Персональний Комп'ютер, комп'ютер, спеціально створений для роботи в режимі одного користувача. Поява персонального комп'ютера прямо пов'язана з народженням мікрокомп'ютера.

ПК - настільний або портативний комп'ютер, який використовує мікропроцесор як єдиний центральний процесор, що виконує всі логічні і арифметичні операції. Ці комп'ютери відносять до обчислювальних машин четвертого і п'ятого покоління. Крім ноутбуків, до переносних мікрокомп'ютерів відносять і кишенькові комп'ютери — палмтопи. Основними

ознаками ПК є шинна організація системи, висока стандартизація апаратних і програмних засобів, орієнтація на широкий круг споживачів.

Зараз ведуться інтенсивні розробки ЕОМ V покоління. Розробка подальших поколінь комп'ютерів проводиться на основі великих інтегральних схем підвищеного ступеня інтеграції, використання оптоелектронних принципів (лазери, голографія).

Ставляться абсолютно інші завдання, ніж при розробці всіх колишніх ЕОМ. Якщо перед розробниками ЕОМ з I по IV поколінння стояли такі завдання, як збільшення продуктивності в області числових розрахунків,

досягнення великої ємкості пам'яті, то основним завданням розробників ЕОМ V

покоління є створення штучного інтелекту машини (можливість робити логічні виводи з представлених фактів), розвиток "інтелектуалізації" комп'ютерів -

усунення бар'єру між людиною і комп'ютером.

Комп'ютери будуть здатні сприймати інформацію з рукописного або друкарського тексту, з бланків, з людського голосу, упізнавати користувача по голосу, здійснювати переклад з однієї мови на інші. Це дозволить спілкуватися з ЕОМ всім користувачам, навіть тим, хто не володіє спеціальними знаннями в цій області. ЕОМ буде помічником людині у всіх областях.

8.Покоління ЕОМ

Уісторії розвитку обчислювальної техніки зазначають передісторію і п'ять періодів(поколінь). Передісторія починається в глибокій давнині з різних рахівниць, а першу механічну обчислювальну машину розробив французький математик і учений Блез Паскаль у 1642 році. Майже одночасно з Паскалем сконструював лічильну машину великий німецький математик Готфрід Лейбніц. У 1833 р. англійський учений Чарльз Бебідж розробив проект

«аналітичної машини», якою мала управляти програма. Здійснити свій проект Бебіджу не вдалося через недостатній розвиток техніки. Лише 100 років потому машина Бебіджа привернула увагу інженерів. Наприкінці тридцятих років XX

ст. німецький інженер Конрад Цузе розробив першу двійкову цифрову машину на електромеханічних реле (механічних перемикачах, що приводяться вдію

електричним струмом). Подальший стрімкий розвиток обчислюв'альної техніки пов'язаний зі створенням ЕОМ (електронно-обчислювальних машин).

Перше покоління ЕОМ. У машинах цього покоління (сорокові роки

XX ст.) використовувалися електронно-вакуумні лампи як основні елементи електронних схем. Лампи, в основному, замінили електромеханічні реле, тому швидкодія обчислювальних машин значно зросла. Першою потужною ЕОМ такого роду була ЕНІАК (США). Однак у ній, як і в інших перших ЕОМ, був серйозний недолік — програма, що виконувалась, не зберігалася в пам'яті машини, а набиралася у складний спосіб за допомогою зовнішніх перемичок. У 1945 р. з'явилася відома робота математика фон Неймана, у якій він сформулював загальні принципи роботи обчислювальних пристроїв. Усі наступні ЕОМ створювалися з використанням цих принципів, згідно з якими програма мала зберігатися в пам'яті машини. Характерними рисами ЕОМ 1-го

покоління є застосування електронних ламп у цифрових схемах, великі габарити, а також трудомісткий процес програмування.

Друге покоління ЕОМ. Коли в середині 50-х років на зміну електронним лампам прийшли напівпровідникові прилади, то ЕОМ почали переводити на напівпровідники. Напівпровідникові (транзистори, діоди) були значно компактніші від електрона них ламп, мали більший термін служби і споживали набагато менше енергії. Найпоширенішими машинами 2-го покоління були «Еліот» (Англія), «Сіменс» (ФРН), «Стретч» (США). У СРСР були розроблені і широко використовувалися «Раздан-2», серія машин «Минск», «Урал», «Наири», «Мир». Найдосконалішою машиною цього покоління була БЭСМ-6, що виконувала понад 1 млн операцій за секунду. ЕОМ 2-го покоління вирізняються застосуванням напівпровідникових елементів і використанням алгоритмічних мов програмування.

Третє покоління ЕОМ. Чергова зміна поколінь ЕОМ відбулася наприкінці 60-х років під час заміни напівпровідникових приладів у пристроях ЕОМ на інтегральні схеми. Інтегральна схема (мікросхема) — це невелика пластинка кристалу. кремнію, на якій уміщаються сотні і тисячі транзисторів, діодів, конденсаторів тощо. Застосування інтегральних схем

дало змогу збільшити кількість електронних елементів в ЕОМ без збільшення реальних розмірів машин. Швидкодія ЕОМ зросла до 10 млн. операцій за секунду. Характерними рисами ЕОМ третього покоління є застосування інтегральних схем і можливість використання розвинутих мов програмування

(мов високого рівня).

Четверте покоління ЕОМ. З удосконаленням мікросхем збільшувалася їхня надійність і щільність розміщених у них елементів. В основі ЕОМ четвертого покоління лежать великі інтегральні схеми (ВІС). У цих схемах на

1см2 приходиться кілька десятків тисяч елементів. Завдяки ВІС стало можливим на одному малесенькому кристалі кремнію розмістити таку велику електронну схему, як процесор ЕОМ. Однокристальні процесори згодом стали називати мікропроцесорами. Перший мікропроцесор був створений компанією Іпtel (США) у 1971 р. Мікропроцесори спричинили появу міні-ЕОМ, а потім і персональних комп'ютерів. ЕОМ 4-го покоління характеризуються застосуван-

ням мікропроцесорів, побудованих на великих інтегральних схемах.

П'яте покоління ЕОМ. Починаючи із середини 90-х років, у потужних комп'ютерах починають застосовуватися ВІСсупер-масштабу. Багато фахівців почали говорити про комп'ютери 5-го покоління. Гадають, що обчислювальними машинами 5-го покоління можна буде легко керувати — користувач зможе просто голосом подавати машині команди. Характерною рисою комп'ютерів п'ятого покоління має бути використання штучного інтелекту і природних мов спілкування.

Основні галузі застосування коми 'ютерів такі:

Обробка інформації з великою швидкістю і точністю;

Збереження великого об'єму різноманітної інформації;

Створення місцевих і глобальних мереж передачі інформації;

Доставка інформації споживачу на будь-яку відстань.

9.Процесори та їх характеристики

Центральний процесор (ЦП) – це основний компонент сучасного компютера, призначений для керування всіма його пристроями та виконання арифметичних і логічних операцій над ними.

ЦП – це компактний модуль (розміром близько 5 х 5 х 0,3 см), що вставляється в гніздо на материнській платі. Напівпровідниковий кристал сучасного процесора містить мільйони чи навіть мільярди транзисторів.

Екскурс в історію. Процесори перших комп’ютерів були громіздкими,

займали цілі шафи і навіть кімнати та складалися з багатьох компонентів. На початку 1970-х років завдяки прориву а технології створення великих і надвеликих інтегральних схем стало можливим розташувати всі компоненти центрального процесора в одному напівпровідниковому пристрої. З’явилися так звані мікропроцесори. Наразі терміни «мікропроцесор» і «процесор» є

синонімами, проте так було не завжди. Звичайні (великі) та мікропроцесорні ЕОМ співіснували протягом 10-15 років, і лише на початку 1980-х років мікропроцесори витіснили своїх старших братів. Саме перехід на мікропроцесори створив передумови для появи персональних комп’ютерів.

Процесор вставляється в спеціальне місце сокет (англ. socket – гніздо,

розетка) на системній (материнській) платі, яка, у свою чергу, розміщується в системному блоці.

Для охолодження процесорів застосовують кулери — пристрої, які складаються з вентилятора і радіатора. На процесор встановлюють радіатор

(зазвичай з алюмінію чи міді), а на нього — вентилятор, що забезпечує притік повітря до радіатора.

Материнська плата

Материнська, або системна, плата (від англ. motherboard) — це складна багатошарова друкована плата, до якої підключено практично всі пристрої комп’ютера. Друкована плата являє собою пластину з діелектрика,

вкриту мережею мідних провідників-доріжок, якими електричні сигнали надходять до змонтованих на платі мікросхем та рознімів, куди вставляють інші пристрої комп‘ютера.

На материнській платі розміщено центральний процесор та чіпсет (від англ. chip set) — набір мікросхем, спроектований для спільної роботи а метою виконання певних функцій. Оперативну пам‘ять, відеокарту тощо вставляють у спеціальні розніми на материнській платі — слоти розширення.

Класифікація та властивості центральних процесорів

Процесори

для

персональних

комп‘ютерів

класифікують

за розрядністю,

кількістю

ядер, тактовою частотою та іншими

властивостями

 

 

 

 

Основні властивості процесорів

 

 

 

 

Оди

 

 

 

 

 

ниці

Значен

Властиві

 

 

 

вимірю-

ня в сучасних

сть

Що характеризує

вання

процесорах

 

 

 

 

 

 

Кількість

двійкових

 

 

Розрядні

розрядів,

що

можуть

 

32 і 64

сть

одночасно

опрацьовуватися

Біт

біти

 

 

 

 

 

 

Тактова

частота

Швидкіс ть опрацювання даних

(швидкодія)

Кеш-

пам‘ять

Кількість

ядер

процесором.

 

 

 

 

 

 

Найбільшу

послідовність

 

 

 

 

розрядів (бітів), яку процесор

 

 

 

 

може обробляти одночасно,

 

 

 

 

називають машинним словом.

 

 

 

 

 

 

 

 

 

 

Скільки

елементарних

 

 

3

ГГц

операцій (тактів) процесор

Гер

(3·109

Гц) і

виконує за секунду

 

ц

більше

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

Кіл

мільярдів

 

Середня

кількість

ькість

операцій

за

операцій, які виконуються за

операцій за

секунду

і

одиницю часу

 

 

секунду

більше

 

 

 

 

 

 

 

 

 

 

 

 

 

І рівня

 

 

 

 

– 32

КбайтІІ

Ємність

кеш-пам‘яті

Бай

рівня

6

першого і другого рівня

 

т

Мбайт

 

 

 

 

 

 

 

 

 

Кількість

однакових

за

 

 

 

 

структурою процесорів,

що

Оди

 

Від

1

об‘єднані в одну мікросхему

ниці

до 4

 

 

 

 

 

 

 

 

 

Сьогодні серед виробників процесорів лідирують дві компанії — Intel

Corporation та Advanced Micro Devices (AMD).