Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

125 Кібербезпека / Магістр (вступні питання)

.pdf
Скачиваний:
107
Добавлен:
23.10.2019
Размер:
3.84 Mб
Скачать

названими класами мереж полягає не тільки в розмірах охоплюваних ними територій, а й у швидкості передавання даних — технології, які забезпечують більші швидкості, працюють на менших відстанях. Існують і інші відмінності щодо використовуваного обладнання та принципів побудови мереж.

За типом з‘єднуваних ЕОМ розрізняють однорідні (гомогенні, з однотипним складом технічних засобів) та неоднорідні (гетерогенні) мережі. Вузли ЛОМ здебільшого комплектуються однотипним апаратним i програмним забезпеченням, що практично неможливо забезпечити у глобальних мережах.

Доступ до комерційних мереж та послуги їхніх сервісних служб є платними. У

некомерційних мережах («умовно безплатних») користувач платить тільки за підімкнення, експлуатацію системи зв‘язку, використання мережних служб.

Комерційні мережі підтримуються професійними організаціями, які існують з метою надання мережних послуг, а некомерційні, як правило, — навчальними закладами, інформаційними структурами та громадськими організаціями.

Якщо всі ЕОМ мережі мають однакову продуктивність і рівні права, мережа називається одноранговою. Однак у процесі нарощування мережі один або кілька комп‘ютерів роблять більш потужними, їм надаються додаткові права —

створюється мережа з виділеним сервером.

Проблема визначення рангів тісно пов‘язана з вибором способу організації оброблення інформації. За цією ознакою мережі поділяються на централізовані,

розподілені, із серверами.

У розподіленій мережі всі вузли виконують подібні між собою функції,

причому кожний окремий вузол може використовувати ресурси інших вузлів і надавати у спільне використання свої ресурси. Такий підхід забезпечує оптимальність використання ресурсів, стійкість мережі до відказів (вихід із ладу одного вузла не призводить до фатальних наслідків — його легко можна

замінити), але при цьому постають проблеми забезпечення розподілу ресурсів,

безпеки та прозорості.

Централізовані мережі (із хост-машиною) складаються з особливо надійного й потужного центральною вузла та неінтелектуальних терміналів. На центральному вузлі здійснюється обробка даних, виконуються функції керування мережею (діагностування, збирання статистики і т. ін.),

установлюється зв‘язок з іншими мережами. Термінали називаються неінтелектуальними, оскільки вони позбавлені обчислювальних можливостей,

на них виконуються тільки функції введення i виведення інформації та керування процесом її оброблення. Роль терміналів можуть виконувати персональні комп‘ютери і навіть дисплейні станції. Нині централізовані мережі

практично не застосовуються.

Проміжне місце між централізованими і розподіленими мережами посідають мережі із серверами. Сервер — це потужний комп‘ютер, призначений для виконання певних завдань за допомогою відповідного ПЗ. Решта машин у

мережі, які

звертаються

до послуг сервера, називаються клієнтськими

(клієнтами),

інша

назва

робочі

станції.

Залежно

від

виконуваних

 

завдань

розрізняють:

принт-сервер (сервер друку) — активний мережний пристрій (комп‘ютер), який дає змогу підмикати кілька принтерів для створення єдиного вузла друку та сортування документів у разі великого документообігу. До різних портів принт-

сервера можна підмикати лазерні, матричні, струменеві принтери, копіри;

файл-сервер (файловий сервер) — центральний вузол мережі, на якому зберігаються файли даних, доступні всім користувачам. Файл-сервер не бере участі у виконанні додатків — файл (або його частина) передається на робочу станцію, а після оброблення дані копіюються на файл-сервер. Він може не лише

виконувати основні функції, а й бути засобом для спільного використання периферійних пристроїв. Мережі з файл-сервером мають два основні недоліки.

По-перше, не забезпечується одночасний доступ кількох користувачів до одного набору даних (файл, з яким працює один користувач, блокується і стає недоступним для інших). По-друге, за великої кількості запитів до файл-сервера мережа швидко насичується і продуктивність системи різко знижується;

клієнт-сервер — це спосіб не стільки організації мережі, скільки логічного подання й обробки інформації, згідно з яким сервери виконують оброблення даних, а клієнтські машини — функції формування запитів, відображення результатів та їх обробки. Окремим випадком організації такого середовища є використання серверів баз даних, які мають таке призначення: управління єдиною базою даних і доступом до неї багатьох користувачів; захист бази даних за допомогою засобів відновлення та створення резервних копій;

контроль за дотриманням правил глобальної цілісності даних. Оскільки клієнт і

сервер працюють спільно і розподіляють завантаження (звідси термін

«розподілена обробка»), така система може забезпечити більшу продуктивність порівняно з файл-серверною. До того ж клієнтська частина додатка працює не з цілими файлами, а з невеликими наборами даних (рядками таблиць), що забезпечує паралельність роботи користувачів і мінімальний мережний трафік.

Перевагами таких систем є також гнучкість, адаптованість до вимог додатків,

оптимальне використання ресурсів, нарощуваність.

Залежно від фізичного середовища передавання даних розрізняють мережі на

основі витої пари,

коаксіального кабелю, оптоволоконного кабелю,

радіозв‘язку,

супутникового

зв‘язку.

За способом використання каналу передавання даних розрізняють мережі з комутацією каналів і мережі з комутацією пакетів. Комутація каналів — це процес з‘єднання двох або більшої кількості станцій з монопольним використанням каналу до його роз‘єднання. У разі комутації пакетів

повідомлення розбивається на частини — пакети, канал зайнятий тільки на час пересилання окремого пакета, після чого звільняється для передавання інших пакетів.

Іншою важливою характеристикою мережі є її топологія — конфігурація з‘єднання елементів. Від топології мережі багато в чому залежать такі її характеристики, як надійність, продуктивність і т. ін. Найпростішим способом організації мережі є безпосереднє з‘єднання всіх вузлів, які мають взаємодіяти,

за допомогою ліній зв‘язку від пристрою до пристрою. Таку мережу називають повнозв‘язаною. Але цей спосіб прийнятний тільки для небагатьох вузлів,

оскільки має такі недоліки, як висока вартість і велика кількість каналів зв‘язку.

Тому основними видами топологій сучасних мереж є «зірка», кільцева, шинна,

деревоподібна.

У мережі з топологією у вигляді зірки (рис. 2.1) центральний вузол

(концентратор) має зв‘язки з робочими станціями, не зв‘язаними між собою безпосередньо. Уся інформація між периферійними робочими місцями проходить через центральний вузол. Пропускна здатність і продуктивність мережі визначаються потужністю центрального вузла, який є найбільш вразливим місцем мережі з погляду її надійності (з порушенням роботи центрального вузла припиняється функціонування всієї мережі). Кабельне з‘єднання досить просте, але для його прокладання потрібні значні витрати,

особливо коли центральний вузол географічно розміщений не в центрі топології.

У випадку кільцевої топології (див. рис. 2.1) кожен вузол мережі має зв‘язок з двома і тільки з двома іншими вузлами — перша робоча станція зв‘язана з другою, друга з третьою і т. д., остання робоча станція зв‘язана з першою.

Повідомлення передаються по колу — на основі аналізу адресної і керуючої інформації, розміщеної на початку повідомлення, станція приймає рішення щодо його подальшого передавання на сусідній вузол. Кільцеві мережі різняться за способом керування. Тривалість передавання інформації збільшується пропорційно кількості станцій мережі. Основними недоліками кільцевої топології є складність і висока вартість прокладки кабелю у випадку географічної віддаленості вузлів та їх розміщення не за колом, а також уразливість — вихід з ладу хоча б однієї станції паралізує всю мережу.

Якщо мережа не замкнена у коло, в ній є тільки два прикінцеві вузли і довільна кількість проміжних, а між будь-якими двома вузлами є лише один шлях, то

таку мережу називають лінійною.

Шинна топологія (рис. 2.2) передбачає наявність комунікаційної лінії,

доступної для всіх робочих станцій, які до неї підімкнено. Будь-яка станція мережі може вступати в контакт з будь-якою іншою станцією. Основними перевагами такої топології є простота розширення мережі (робочі станції можуть бути підімкнені або відімкнені від мережі в будь-який час без порушення її роботи), простота методів управління, відсутність необхідності в централізованому управлінні, мінімальні витрати кабелю, надійність

(функціонування мережі не залежить від стану окремої робочої станції). Для підвищення надійності роботи мережі разом з основним кабелем прокладають запасний, на який станції перемикаються в разі несправності основного.

Окремо розглядають клас чарункових мереж, які містять принаймні два вузли,

між якими є два чи більше шляхів.

Поряд із названими топологіями мереж застосовуються і комбіновані. Одним із

прикладів є деревоподібна топологія (рис. 2.3), яку можна розглядати як розвиток шинної топології — за допомогою спеціальних пристроїв

об‘єднуються кілька шин — або топології типу «зірка» — один чи кілька термінальних вузлів можуть бути концентраторами іншої мережі.

Варто зазначити, що термін «топологія» застосовується здебільшого до ЛОМ — глобальні мережі будуються за довільними топологіями і найчастіше

функціонують за специфічними протоколами.

Набори технічних засобів і правила їх з‘єднання для організації мережі певної топології описано у відповідних стандартах. Таким чином регламентується припустима мережна архітектура — кабельна система мережі, кодування сигналів, швидкість передавання, формат мережних кадрів, топологія і метод

доступу до каналу. Іншими словами, мережна архітектура визначає реалізацію фізичного і канального рівнів моделі OSI. Найпоширенішими архітектурами мереж є Ethernet та її модифікації, Token Ring (маркерне кільце), ARCnet, FDDI (інтерфейс передавання даних за оптоволоконними лініями) та її модифікації, ATM (технологія асинхронного передавання даних), ISDN (цифрова мережа з

інтеграцією сервісу).

Мережі також можна класифікувати за операційними системами, які забезпечують їх функціонування. До найпоширеніших мережних операційних

систем належать Microsoft Windows, Microsoft Windows NT,

IBM OS/2 та

UNIX-системи

(BSD,

LINUX

та

ін.).

30. Характеристики комп’ютерних мереж

Вимоги, пропоновані до сучасних обчислювальних мереж

1. Продуктивність.

Існує кілька основних характеристик продуктивності мережі:

1.час реакції;

2.пропускна здатність;

3.затримка передачі.

Час реакції визначається як інтервал часу між виникненням запиту користувача до якої-небудь мережної служби й одержанням відповіді на цей запит.

Очевидно, що значення цього показника залежить від типу служби, до якої звертається користувач, від того, який користувач і до якого сервера звертається, а також від поточного стану елементів мережі – завантаженості сегментів, комутаторів і маршрутизаторів, через які проходить запит,

завантаженості сервера й т.п.

Пропускна здатність відбиває обсяг даних, переданих мережею або її частиною в одиницю часу.

Пропускна здатність виміряється або в бітах у секунду, або в пакетах у секунду. Пропускна здатність може бути миттєвої, максимальної й середньої.

Середня пропускна здатність обчислюється шляхом розподілу загального обсягу переданих даних на час їхньої передачі, причому вибирається досить тривалий проміжок часу – година, день або тиждень.

Миттєва пропускна здатність відрізняється від середньої тем, що для усереднення вибирається дуже маленький проміжок часу – наприклад, 10 мс або 1 с.

Максимальна пропускна здатність – це найбільша миттєва пропускна здатність, зафіксована протягом періоду спостереження.

Затримка передачі визначається як затримка між моментом надходження пакета на вхід якого-небудь мережного пристрою або частини мережі й моментом появи його на виході цього пристрою. Цей параметр продуктивності за змістом близький до реакції мережі, але відрізняється тим, що завжди характеризує тільки мережні етапи обробки даних, без затримок обробки комп‘ютерами мережі.

Пропускна здатність і затримки передачі є незалежними параметрами,

так що мережа може володіти, наприклад, високою пропускною здатністю, але вносити значні затримки при передачі кожного пакета.

2. Надійність і безпека Для оцінки надійності використовується:

Коефіцієнт готовності означає частку часу, протягом якого система може бути використана. Готовність може бути поліпшена шляхом введення надмірності в структуру системи: ключові елементи системи повинні існувати в декількох екземплярах, щоб при відмові одного з них функціонування системи забезпечували інші.

Іншим аспектом загальної надійності є безпека (security), тобто здатність системи захистити дані від несанкціонованого доступу.

Ще одною характеристикою надійності є відмовостійкість (fault wrance).

У мережах під відмовостійкостю розуміється здатність системи сховати від користувача відмову окремих її елементів. В відмовостійкій системі відмова одного з її елементів приводить до деякого зниження якості її роботи, а не до повного останову.

3. Розширюваність і масштабованість

Розширюваність (extensibility) означає можливість порівняно легкого додавання окремих елементів мережі (користувачів, комп‘ютерів, додатків,

служб), нарощування довжини сегментів мережі й заміни існуючої апаратури більш потужною. При цьому принципово важливо, що легкість розширення системи іноді може забезпечуватися в деяких досить обмежених межах.

Масштабованість (scalability) означає, що мережа дозволяє нарощувати кількість вузлів і довжину зв‘язків у дуже широких межах, при цьому продуктивність мережі не погіршується. Для забезпечення масштабованості мережі доводиться застосовувати додаткове комунікаційне устаткування й спеціальним образом структурувати мережу

4. Прозорість

Прозорість (transparency) мережі досягається в тому випадку, коли мережа представляється користувачам не як безліч окремих комп‘ютерів,

зв‘язаних між собою складною системою кабелів, а як єдина традиційна обчислювальна машина із системою поділу часу. Прозорість може бути досягнута на двох різних рівнях – на рівні користувача й на рівні програміста.

На рівні користувача прозорість означає, що для роботи з вилученими ресурсами він використовує ті ж команди й звичні йому процедури, що й для роботи з локальними ресурсами. На програмному рівні прозорість полягає в тім, що додатку для доступу до вилучених ресурсів потрібні ті ж виклики, що й для доступу до локальних ресурсів.

5. Керованість Керованість мережі має на увазі можливість централізовано

контролювати стан основних елементів мережі, виявляти й розв‘язувати проблеми, що виникають при роботі мережі, виконувати аналіз продуктивності й планувати розвиток мережі. В ідеалі засоби керування мережами являють собою систему, що здійснює спостереження, контроль і керування кожним елементом мережі – від найпростіших до самих складних пристроїв, при цьому така система розглядає мережу як єдине ціле, а не як розрізнений набір окремих пристроїв.

6. Сумісність Сумісність означає, що мережа здатна містити в собі найрізноманітніше

програмне й апаратне забезпечення, тобто в ній можуть співіснувати різні операційні системи, що підтримують різні стеки комунікаційних протоколів, і

працювати апаратні засоби й додатки від різних виробників. Мережа, що складається з різнотипних елементів, називається неоднорідної або гетерогенної, а якщо гетерогенна мережа працює без проблем, то вона є інтегрованою. Основний шлях побудови інтегрованих мереж – використання модулів, виконаних відповідно до відкритих стандартів і специфікацій.

31. Глобальні мережі

Глобальна мережа англ. Wide Area Network,(WAN) це з'єднання локальних мереж і окремих комп'ютерів, розташованих на далекій відстані один від одного. Кожна з глобальних мереж (INTERNET, BITNET, DECNET і

ін.) організовувалася для певних цілей, а надалі розширювалася завдяки підключенню локальних мереж, що використовують її послуги і ресурси.

Найбільшою глобальною інформаційною мережею є Internet. Internet-

глобальна всесвітня мережа інформаційного обміну, яка об'єднує кілька мільйонів людей із більш ніж 100 країн світу за допомогою сучасних і зручних засобів зв'язку. Своє існування Internet розпочала з 1969 року.

Архітектура мережі Internet розроблена на основі концепції взаємопоєднуваності або міжмережевого поєднання різнорідних мереж,

побудованих на базі різних фізичних систем зв'язку і комунікаційних технологій.

Таким чином, Internetце сукупність технічних засобів, стандартів і домовленостей, яка дає змогу підтримувати зв'язок між різними комп'ютерними мережами у світі.

Основою функціонування Internet є базовий протокол TCP/IP

(TransmissionControlProtocol/InternetProtocol). Він становить сукупність протоколів – систем стандартів і правил зв'язку та передавання інформації у глобальній мережі.