Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Elektrotekhnika_i_elektronika_OTVET.docx
Скачиваний:
32
Добавлен:
28.09.2019
Размер:
1.95 Mб
Скачать

31. Расчет электропривода.

Электрический привод (сокращённо — электропривод) — это электромеханическая система для приведения в движение исполнительных механизмов рабочих машин и управления этим движением в целях осуществления технологического процесса.

Расчет электропривода позволяет рассчитать и проанализировать энергетические показатели электропривода переменного тока:

- активную энергию, потребляемую из сети на каждом участке тахограммы и за весь цикл работы;

- реактивную мощность, потребляемую из сети;

- энергию потерь в приводе;

- полезную мощность;

- коэффициент мощности;

- коэффициент полезного действия привода.

32. Электропроводимость полупроводников.

Свободными носителями заряда в полупроводниках как правило, являются электроны, возникающие в результате ионизации атомов самого полупроводника (собственная проводимость) или атома примеси (примесная проводимость). В некоторых полупроводниках носителями заряда могут быть ионы.

При абсолютном нуле зона проводимости пустая, как у диэлектриков, а уровни валентной зоны полностью заполнены. Под действием избыточной энергии ΔWo , появляющейся за счет температуры, облучения, сильных электрических полей и т.д., некоторая часть электронов валентной зоны переходит в зону проводимости. Энергия ΔWo в случае беспримесного полупроводника, равна ширине запрещенной зоны и называется энергией активации. В валентной зоне остается свободное энергетическое состояние, называемое дыркой, имеющей единичный положительный заряд.

При отсутствии электрического поля дырка, как и электрон, будет совершать хаотические колебания, при этом происходят и обратные переходы электронов из зоны проводимости на свободные уровни валентной зоны (рекомбинация).

Электропроводность, возникающая под действием электрического поля за счет движения электронов и в противоположном направлении такого же количества дырок, называется собственной. В удельную проводимость полупроводника дают вклад носители двух типов - электроны и дырки.

Примесная проводимость. Поставка электронов в зону проводимости и дырок в валентную зону может быть за счет примесей, которые могут ионизоваться уже при низкой температуре. Энергия их активации значительно меньше энергии, необходимой для ионизации основных атомов вещества. Примеси, поставляющие электроны в зону проводимости, занимают уровни в запретной зоне вблизи дна зоны проводимости. Они называются донорными. Примеси, захватывающие электроны из зоны проводимости, располагаются на уровнях в запретной зоне вблизи потолка валентной зоны и называются акцепторными.

33. Электронно-дырочный переход и его свойства.

В любом полупроводниковом приборе имеется один или несколько электронно-дырочных переходов. Электронно-дырочный переход (или n–p-переход) – это область контакта двух полупроводников с разными типами проводимости.

В полупроводнике n-типа основными носителями свободного заряда являются электроны; их концентрация значительно превышает концентрацию дырок (nn >> np). В полупроводнике p-типа основными носитялеми являются дырки (np >> nn). При контакте двух полупроводников n- и p-типов начинается процесс диффузии: дырки из p-области переходят в n-область, а электроны, наоборот, из n-области в p-область. В результате в n-области вблизи зоны контакта уменьшается концентрация электронов и возникает положительно заряженный слой. В p-области уменьшается концентрация дырок и возникает отрицательно заряженный слой. Таким образом, на границе полупроводников образуется двойной электрический слой, поле которого препятствует процессу диффузии электронов и дырок навстречу друг другу (рис. 1.14.1). Пограничная область раздела полупроводников с разными типами проводимости (так называемый запирающий слой) обычно достигает толщины порядка десятков и сотен межатомных расстояний. Объемные заряды этого слоя создают между p- и n-областями запирающее напряжение Uз, приблизительно равное 0,35 В для германиевых n–p-переходов и 0,6 В для кремниевых. n–p-переход обладает удивительным свойством односторонней проводимости.

Если полупроводник с n–p-переходом подключен к источнику тока так, что положительный полюс источника соединен с n-областью, а отрицательный – с p-областью, то напряженность поля в запирающем слое возрастает. Дырки в p-области и электроны в n-области будут смещаться от n–p-перехода, увеличивая тем самым концентрации неосновных носителей в запирающем слое. Ток через n–p-переход практически не идет. Напряжение, поданное на n–p-переход в этом случае называют обратным. Весьма незначительный обратный ток обусловлен только собственной проводимостью полупроводниковых материалов, т. е. наличием небольшой концентрации свободных электронов в p-области и дырок в n-области.

Если n–p-переход соединить с источником так, чтобы положительный полюс источника был соединен с p-областью, а отрицательный с n-областью, то напряженность электрического поля в запирающем слое будет уменьшаться, что облегчает переход основных носителей через контактный слой. Дырки из p-области и электроны из n-области, двигаясь навстречу друг другу, будут пересекать n–p-переход, создавая ток в прямом направлении. Сила тока через n–p-переход в этом случае будет возрастать при увеличении напряжения источника.

Способность n–p-перехода пропускать ток практически только в одном направлении используется в приборах, которые называются полупроводниковыми диодами. Полупроводниковые диоды изготавливают из кристаллов кремния или германия. При их изготовлении в кристалл c каким-либо типом проводимости вплавляют примесь, обеспечивающую другой тип проводимости.

Транзистор структуры pnp

Транзистор структуры npn

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]