Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект Геодезия с рисун.doc
Скачиваний:
109
Добавлен:
27.09.2019
Размер:
9.96 Mб
Скачать

Геодезические сети

Назначение и виды геодезических сетей. Геодезическая сеть – это совокупность опорных точек земной поверхности, положение которых определено в общей для них системе геодезических координат. Государственная геодезическая сеть высшего класса используется для решения научных задач геодезии и распространения единой системы координат и высот на территории страны. Кроме этого, сети высшего класса являются основой для развития геодезических сетей сгущения, необходимых для производства топографических съемок и решения инженерно-геодезических задач. Сеть сгущения служит для дальнейшего увеличения количества опорных геодезических точек. Съемочная сеть является обоснованием для проведения топографических съемок, а также для выполнения инженерно-строительных геодезических работ. Существует два вида геодезических сетей: 1. Плановая; 2. Высотная.

Высотная сеть Российской Федерации предназначена для обеспечения территории страны исходными высотными пунктами в единой системе высот

Методы создания геодезических сетей.

Плановые геодезические сети создаются методами триангуляции, полигонометрии и трилатерации. При использовании метода триангуляции на местности закрепляется ряд точек, образующих систему треугольников. В этих треугольниках измеряются углы и отдельные стороны, называемыми базисными.

Рис. . Схемы триангуляции и полигонометрии

Метод полигонометрии заключается в построении на местности системы ломаных линий, называемых полигонометрическими ходами. Обычно эти ходы прокладываются между пунктами триангуляции. Далее в полигонометрических ходах измеряются все углы поворотов и длины сторон. В методе трилатерации, аналогичном методу триангуляции, построение сети треугольников осуществляется с помощью свето или радиодальномеров.

Высотная геодезическая сеть строится методом геометрического или тригонометрического нивелирования.

Государственная геодезическая сеть. Плановая государственная сеть Российской Федерации подразделяется на сети 1, 2, 3 и 4 классов. Сеть 1 класса предназначена для решения научных задач геодезии и является основой для развития сетей последующих классов. Полигоны геодезической сети 1 класса имеют периметр в пределах 800 км. Звенья полигона сети 1 класса имеют длину не более 200 км, а длина стороны каждого треугольника этой сети не превышает 25 км. Звенья данной сети располагаются по возможности вдоль меридианов и параллелей, чаще всего вблизи железных дорог, линий электропередачи федерального масштаба. В местах пересечения звеньев триангуляции измеряются базисные стороны, на концах которых закрепляются пункты с точными значениями географической широты и долготы. Кроме этого, азимут направления базисной стороны также определяется путем астрономических наблюдений. Геодезические пункты, координаты которых определены из астрономических наблюдений, называются пунктами Лапласа, а геодезическую сеть, включающую эти пункты, называют астрономо-геодезической сетью.

Сеть второго класса строится в виде сплошной сети треугольников, находящихся внутри полигонов 1 класса. Сети триангуляции 3 и 4 классов определяются вставками систем треугольников относительно пунктов сетей более высокого порядка. Длина стороны треугольников в сетях 1 класса не превышает 25 км, 2 класса – 20 км, 3 класса 8 км, 4 класса 5 км. Средняя квадратическая ошибка измерения углов в треугольниках государственных геодезических сетей в зависимости от их класса находится в пределах 0,7÷2 секунд. Относительная ошибка длины базисной стороны от 1:400 000 до 1:150 000. Такие показатели при построении государственной геодезической сети достигаются за счет применения высокоточных геодезических измерений.

Государственная высотная геодезическая сеть также подразделяется на классы. Главной высотной основой для установления единой системы высот на территории России являются нивелирные сети I и II классов. Нивелирные сети III и IV классов служат для обоснования топографических съемок и решения инженерно-строительных задач. Нивелирование 1 класса выполняется с наивысшей точностью, при которой высотные невязки в полигонах или ходах не должны превышать 5 L мм, где L – периметр полигона в км. Высоты пунктов государственной нивелирной сети считаются от нуля Кронштадтского футштока Балтийской системы. На территориях геодезической съемки в масштабах 1:25000 средняя плотность пунктов высотной и плановой сети должна составлять 1 пункт на 50 км2. Для съемок в масштабе 1:5000 один пункт триангуляции или полигонометрии плановой основы должен приходиться на 25 км2, а высотной основы – 15 км2. При более крупных масштабах съемки один пункт плановой триангуляционной основы должен приходиться на 10 км2, а высотной – на 5 – 7 км2.

Геодезические сети сгущения и съемочные геодезические сети.

Для увеличения плотности пунктов опорной геодезической сети строятся геодезические сети сгущения. Классификация сетей сгущения производится по разрядам. Сети триангуляции и полигонометрии 1 и 2 разрядов развиваются относительно пунктов государственной геодезической сети 1 – 4 классов. Базисные стороны в сетях триангуляции 1 и 2 разрядов измеряются светодальномерами, а углы – точными теодолитами Т2 способом круговых приемов. Длина стороны треугольника в сети сгущения 1 разряда не должна превышать 5 км, 2 разряда – 3 км. Предельная ошибка в измерениях угла – не более 5 сек. Относительная ошибка базисной стороны для сетей 1 разряда – 1:50 000, 2 разряда - 1 : 20 000. Полигонометрические сети сгущения, создающиеся в виде отдельных ходов, имеют длины сторон от 0,12 до 0,8 км с ошибкой измерения длины 1:10 000. Средняя ошибка измерения углов – не более 5 сек. В сетях сгущения 2 разряда длина стороны находится в пределах от 0,08 до 0,35 км с ошибкой 1:5000. Высотные сети сгущения создаются методом нивелирования IV класса или техническим нивелированием. Невязки в ходах и полигонах не должны превышать 50 L, мм, где L – длина хода, км. В соответствии с инструкцией по топографической съемке число пунктов государственной геодезической сети сгущения в городах должно составлять 4 пункта на 1 км2 на застроенных территориях и до 1 пункта на 1 км2 – на незастроенных территориях. При инженерных изысканиях плотность геодезической сети может доходить до 8 пунктов на 1 км2. Съемочная геодезическая сеть, необходимая для выполнения инженерно-геодезических работ в строительстве, создается построением триангуляционных сетей и полигонов с помощью тахеометров и мензул прямыми и обратными комбинированными засечками. Высоты точек съемочного обоснования определяются техническим или тригонометрическим нивелированием.

Закрепления пунктов геодезических сетей. Для обеспечения неизменности положения пунктов плановой государственной геодезической сети в течение длительного времени они должны быть закреплены на местности. В зависимости от состава грунта и глубины промерзания почвы создаются специальные центры глубиной около 2 м для неглубокого промерзания грунта. Центр геодезического знака размещается в колодце, над которым устанавливается опознавательный столбик. Для обеспечения взаимной видимости между пунктами над центрами геодезических знаков устанавливаются пирамиды различных конструкций. В

- центр геодезического знака

- геодезические знаки:

а- пирамида ; б - сигнал

верхней части пирамид устанавливается визирный цилиндр для обеспечения угловых измерений. В зависимости от условий местности геодезические знаки могут иметь различные конструкции. В условиях открытой местности при хорошей видимости между пунктами угловые измерения производятся со штатива, установленного на земле непосредственно над центром пункта геодезической сети. В условиях леса на местности строятся сигналы высотой до 40 метров. При этом прибор для измерения углов устанавливается на специальном столике, размещенном в верхней части сигнала. В этом случае необходимо соблюдать условие, при котором центр столика, центр геодезического пункта и ось визирного цилиндра должны находиться на одной отвесной линии. В городах с многоэтажной застройкой пункты триангуляции устанавливаются на крышах высотных зданий. Этот пункт представляет собой кирпичный или бетонный столбик с визирным цилиндром. Столбик служит для размещения на нем угломерного прибора. Пункты высотной государственной геодезической сети представляют собой специальные знаки, а именно: стенные реперы, марки или грунтовые реперы. Стенные реперы и марки закрепляются в стенах фундаментальных зданий. Отметка марки соответствует центру отверстия в диске марки, в которое подвешивается нивелирная рейка. Отметка стенного репера соответствует полочке, на которую устанавливается рейка. Основным высотным знаком геодезической государственной сети является стенной репер. Если вблизи пункта опорной геодезической сети нет фундаментальных зданий, то для его закрепления закладывается грунтовый репер, состоящий из стальной трубы или отрезка рельса. Эти детали из металла заделываются в бетонные монолиты. Сверху стальной трубы закладывается марка со сферической головкой. При нивелировании за начало отсчета принимается верхняя часть головки. Пункты съемочных геодезических сетей закрепляются на местности временными знаками: деревянными столбиками, колышками, отрезками металлических труб и др. Координаты всех пунктов плановой геодезической сети, а также отметки пунктов высотной геодезической сети заносятся в специальные каталоги, в которых кроме названия пунктов дается описание их расположения.

Геометрическое нивелирование

Сущность и способы геометрического нивелирования. Сущность геометрического нивелирования заключается в определении превышений одной исходной точки местности над другой, достаточно близкой к исходной точке. При нивелировании используется горизонтальный оптический луч нивелира и отвесно установленная в соответствующих точках нивелирная рейка. По полученным превышениям относительно отметки начальной, исходной точки и её отметке рассчитывают отметки всех других точек местности. Существует два основных способа геометрического нивелирования. Первый способ – нивелирование из середины. В этом случае устанавливают нивелир между рассматриваемыми точками, примерно, на равных расстояниях. Приводят визирную ось прибора в горизонтальное положение. В точках А и В устанавливают геодезические рейки с сантиметровыми делениями, оцифрованными снизу вверх. Зрительную трубу нивелира наводят сначала на отвесно установленную над исходной точкой А геодезическую рейку и снимают по ней отсчет а. Затем наводят зрительную трубу нивелира на рейку, установленную отвесно в точке В и аналогично снимают отсчет в. Для определения превышения находят разность между отсчетами по рейкам в точках А и В. h = a – b. Если требуется определить превышение точки А над точкой В, то превышение будет положительным, если а больше b и отрицательным, если а меньше b. Если превышение окажется положительным, это означает, что точка А расположена выше точки В, и наоборот, если отрицательным, точка А ниже точки В.

Р ис. . Схема последовательного нивелирования

Для определения превышений вторым способом нивелир устанавливают в исходной точке А так, чтобы окуляр зрительной трубы находился на отвесной линии, проходящей через точку А. После этого приводят визирную ось зрительной трубы в горизонтальное положение и измеряют расстояние i от центра зрительной трубы окуляра до точки А. После этого делают отсчет b по показаниям передней геодезической рейки. Превышение рассчитывают по формуле: h = I – b. Расстояние i измеряют стальной рулеткой или отсчитывают по рейке. В тех случаях, когда превышение между точками нельзя определить с помощью одной установки нивелира, а также для составления профиля местности выполняют последовательное нивелирование.

И з рисунка следует, что превышение конечной точки В над начальной точкой А надо рассчитывать по формуле: h0 = Σhi = Σai – Σbi;

Другими словами, превышение равно сумме отсчетов по задней рейке минус сумма отсчетов по передней рейке при нивелировании из середины. При этом точки 1, 2 и 3 называются связующими точками. Точки установки нивелира называются станциями. Связующие точки на местности распределяются через равные интервалы, составляющие обычно 100 м. Однако эти точки порой не совпадают с перегибами рельефа. Для определения отметок точек перегиба рельефа в них обозначаются дополнительные точки нивелирования, которые называются промежуточными или плюсовыми. На плане ситуации эти точки обозначаются числом метров, соответствующим расстоянию этих точек от задней точки нивелирования.

Влияние кривизны Земли и рефракции на нивелирование.

Оптический визирный луч во время нивелирования проходит по прямой, касательной к уровенной поверхности. Поэтому в точках отсчета по задней и передней рейке отметки по рейке не будут точно совпадать с истинными высотами этих точек. Учесть эти неточности можно с помощью внесения соответствующих поправок за кривизну Земли. Формула данной поправки: k = d2 / 2 R, где d – расстояние от нивелира до рейки в метрах, R – радиус Земли в км. Кроме поправки за кривизну Земли, при нивелировании необходимо учитывать поправку за рефракцию. Эти погрешности геодезических измерений обусловлены оптическими свойствами атмосферы, в которой имеет место отклонение светового луча от прямой линии в сторону уровенной поверхности. Среднее значение поправки за рефракцию выражается следующей зависимостью: r = 0,16k, или r = 0,16 d2/2R. Учет обоих поправок при нивелировании поверхности может быть выражен следующей формулой: f = k – r, или f = 0,42d2/R. Расчеты показывают, что при длине линии 50 м f = 0,2 мм, 100 м – 0,7 мм, 200 м – 2,6 мм, 400 м – 10,5 мм.

При нивелировании поверхности, когда расстояния от нивелира до реек одинаковы, поправка за кривизну Земли и за рефракцию исключается.

Рис. . Схема влияния кривизны земли и рефракции на определение превышений

Нивелиры, их устройство и поверки. По точности измерения высоты точек нивелиры подразделяются на три типа: высокоточные, для нивелирования I и II классов, точные для нивелирования III и IV классов и технические, предназначенные для инженерно-технических работ. Часть нивелиров по конструкции различается тем, что визирная ось их зрительных труб устанавливается в горизонтальное положение с помощью цилиндрического уровня. Большинство нивелиров обеспечено самоустанавливающейся горизонтальной линией визирования. Наибольшее распространение для технического нивелирования получили точные нивелиры Н-3, Н-3К, а также технический нивелир Н-10КЛ.

Нивелир Н-3 (рис.) состоит из зрительной трубы, на корпусе которой установлены коробка цилиндрического уровня и мушка для приближенного наведения зрительной трубы на рейку. Оптическая система зрительной трубы нивелира по аналогии с трубой теодолита имеет окуляр, фокусирующую линзу с кремальерой и объектив. Кроме этого зрительная труба нивелира оснащена закрепительным и наводящим винтом.

Рис. Нивелиры

Нивелир Н-3 оснащен круглым уровнем в комплекте с тремя исправительными винтами, элевационным винтом, подставкой, пружинистой пластиной с тремя подъемными винтами. Круглый уровень необходим для приближенной установки оси нивелира в отвесное положение. Элевационный винт служит для точной установки визирной оси нивелира в горизонтальное положение. В коробке цилиндрического уровня находится система оптических призм, с помощью которых изображение концов пузырька уровня передается в поле зрения зрительной трубы. Установка пузырька уровня в нуль-пункт достигается путем совмещения изображений концов пузырька, то есть его половинок, в единое целое с помощью вращения элевационного винта. Такой уровень называется контактным. Цена деления круглого уровня составляет 5 угловых минут, в цилиндрическом уровне цена деления не превышает 15 угловых секунд. Коэффициент дальномера равен 100. Нивелир Н-3К содержит маятниковый оптико-механический компенсатор, состоящий из подвижной призмы, подвешенной на двух парах скрещенных стальных нитей, и неподвижной призмы. Колебания компенсатора гасятся воздушным поршневым демпфером. Визирная ось нивелира устанавливается в горизонтальное положение автоматически. Зрительная труба с внутренней фокусировкой имеет коэффициент увеличения равный 30.

Поверки и юстировка нивелира Н-3. 1. Ось круглого уровня должна быть параллельна оси вращения нивелира. Для поверки с помощью подъемных винтов приводят пузырек уровня в центр круга, расположенного на коробке уровня. Далее поворачивают верхнюю часть нивелира на 180О. Если пузырек не сместился от центра, то первая поверка считается выполненной. Если пузырек уровня сместился от центра, то с помощью исправительных винтов уровня перемещают пузырек на половину его отклонения. Затем подъемными винтами приводят пузырек в нуль-пункт. Для контроля поверку повторяют. Перед каждой последующей поверкой предварительно приводят ось нивелира в вертикальное положение по круглому уровню. Для чего с помощью подъемных винтов устанавливают пузырек в центр круга. При вращении верхней части нивелира пузырек уровня должен всегда находится в нуль-пункте. 2. Горизонтальная нить сетки зрительной трубы должна быть перпендикулярна оси вращения нивелира. Для проверки соблюдения данного условия среднюю нить сетки наводят на ясно видимую точку, расположенную на расстоянии от 25 до 30 метров от нивелира, и наводящим винтом плавно вращают зрительную трубу. При вращении зрительной трубы нить сетки не должна сходить с выбранной точки. При несоблюдении данного условия необходимо ослабить винты крепления сетки с корпусом зрительной трубы и повернуть сетку в требуемом направлении.

3. Ось цилиндрического уровня должна быть параллельна визирной оси зрительной трубы. Данное условие является основным при поверках нивелира. Поверка этого условия производится двойным нивелированием одной и той же линии с её разных концов (рис.40). Линия должна быть длиной не менее 50 метров. Концы её закрепляются колышками. Вначале устанавливают нивелир в точке А так, чтобы окуляр зрительной трубы находился на одной отвесной линии с данной точкой. С помощью круглого уровня приводят ось вращения нивелира в отвесное положение и измеряют высоту от точки А до центра окуляра i1. В точке В устанавливают нивелирную рейку и снимают по ней отсчет b1. Если визирная ось зрительной трубы и ось цилиндрического уровня нивелира непараллельные, то в величину отсчета войдет неучтенная ошибка x. Из рисунка следует, что превышение h = i1 – (b1 – x). Далее устанавливают нивелир в точке В. Измеряют высоту i2 от точки В до центра окуляра зрительной трубы и снимают отчет b2 в точке А. Тогда превышение h = (b2 – x) - i2. Следовательно:

i1 – (b1 – x) = (b2 – x) - i2, откуда x = (b1 + b2)/2 – (i1 + i2)/2. Если х меньше 4 мм, то юстировку прибора не проводят. Если условие не выполняется, то с помощью элевационного винта наводят среднюю нить сетки зрительной трубы прибора на исправленный отсчет b = b1 – х и вертикальными исправительными винтами уровня совмещают изображения концов пузырька в отсчетном устройстве нивелира. Для контроля поверку повторяют.

Рис. Схемы поверки оси цилиндрического уровня

Нивелирные рейки. Устройство и поверки. Для работ в геодезии при техническом нивелировании применяют двухсторонние цельные рейки РН-3 длиной 3000 мм, толщиной 20 – 30 мм, шириной 80 – 100 мм, а также складные рейки длиной 3000 – 4000 мм. На одной стороне рейки черной краской нанесены шашечные сантиметровые деления, которые чередуются с белыми, также сантиметровыми делениями. На противоположной стороне рейки сантиметровые деления нанесены красной краской (красная сторона). На черной стороне нулевой отсчет совпадает с пяткой рейки. В то время, как на красной стороне с пятками совпадают отсчеты 4687 или 4787 мм.

Рис. Нивелирная рейка и рейка в поле зрения трубы.

Счет делений возрастает от нижнего конца рейки. Цифры на рейке подписаны через каждый дециметр в перевернутом виде, для того, чтобы в поле зрения трубы нивелира они имели прямое изображение. Разность отсчетов по разным сторонам рейки должна быть постоянной. Это служит контролем нивелирования на станции. Для приведения реек в отвесное положение к ним прикреплен круглый уровень, параллельность оси которого плоскости рейки проверяют по отвесу. Если уровни отсутствуют, то при визировании рейку плавно наклоняют вперед и назад вдоль линии визирования. Наименьший отсчет по рейке будет соответствовать её вертикальному положению. При отсчетах менее 1000 мм рейку можно устанавливать в вертикальное положение на глаз. Во время нивелирования точки установки рейки должны быть закреплены деревянными колышками, металлическими костылями или башмаками. Перед началом работы рейки поверяют с помощью контрольного метра или стальной рулетки с миллиметровыми делениями. Дважды измеряют длины метровых отрезков, а затем – дециметровых. Ошибка дециметрового деления не должна превышать 1 мм, а вся длина рейки должна находиться в пределах ±2 мм. Геодезические приборы, в частности, нивелиры и рейки необходимо содержать в нормальных условиях, не допуская их загрязнений, а также ударов и сотрясений.

Техническое нивелирование. При топографических съемках во время проведения изысканий или строительства инженерных сооружений для определения отметок пунктов съемочного обоснования производится техническое нивелирование поверхности. При изыскании трасс линейных строительных сооружений производится разбивка пикетажа, измерение углов поворота трассы и съемка ситуации. Трасса разбивается на участки длиной по 100 метров каждый. Начальная и конечная точки участка называются пикетами. Пикеты на местности закрепляются деревянными колышками, забиваемыми вровень с поверхностью земли. Рядом с колышками забивают в землю сторожки. На сторожке подписывают номер пикета. Начальной точке участка трассы присваивают номер 0, конечной точке первого участка – номер 1, в конце второго участка № 2 и т.д. При разбивке пикетажа на перегибах рельефа отмечают промежуточные точки, которые называют плюсовыми. На сторожках подписывают номер предыдущего пикета и расстояние до него от плюсовой точки. Разбивку пикетажа выполняют с помощью стальной ленты. В точке поворота трассы с помощью теодолита измеряют полным приемом угол, лежащий вправо по ходу. Кроме этого вдоль трассы по обе её стороны производится съемка ситуации в полосе 20÷40 метров. Одновременно с разбивкой пикетажа и съемкой ситуации ведется пикетажный журнал на миллиметровой бумаге. Этот журнал выполняется в крупном масштабе, чаще всего 1:2000. Превышение между точками определяется, как правило, способом нивелирования из середины. Расстояние от нивелира до реек допускается до 150 м. Неравенство этих расстояний не должно превышать 5 метров. Зрительная труба после подготовки нивелира к работе наводится на рейку, установленную в точке нивелирования. Отсчет по средней нити рейки выполняется после получения резкого изображения сетки нитей и делений рейки с точностью 1 мм. Основным условием нивелирования является совмещение концов пузырька цилиндрического уровня нивелира, которое достигается вращением элевационного винта. При техническом нивелировании устанавливается следующий порядок работы:

  1. Отсчет по черной стороне задней рейки. 2. Отсчет по черной стороне передней рейки. 3. Отсчет по красной стороне передней рейки. 4. Отсчет по красной стороне задней рейки. 5. Отсчет по черной стороне рейки, установленной на промежуточных точках.

На промежуточных точках устанавливается задняя рейка. Отсчеты по рейкам записываются в журнал установленной формы. Разности отсчетов, то есть превышения h по черным и красным сторонам реек, не должны превышать 5 мм. Нивелирный ход должен опираться на два исходных репера, отметки которых известны.

Обработка результатов технического нивелирования. Первым этапом в обработке результатов нивелирования является проверка полевых измерений в нивелирном журнале. Эта проверка выполняется на каждой странице журнала, где подсчитываются суммы отсчетов по задним рейкам Σа , суммы отсчетов по передним рейкам Σb и алгебраическая сумма средних превышений. Из условий нивелирования сумма средних превышений Σhср = а – Σb)/2; Невязка в превышениях замкнутого нивелирного хода f = Σhср. Если нивелирный ход проложен между двумя реперами с известными отметками H1 и H2, то f = Σhср – (H2H1). Рассчитанная невязка при техническом нивелировании не должна превышать fh = 50 мм, где L – длина нивелирного хода в км, или f = 10 мм, где n – число станций на 1 км хода, при n > 10. Если невязка допустима, то её величину распределяют поровну с обратным знаком в превышения каждой станции. Сумма поправок должна равняться невязке с обратным знаком. Сумма исправленных превышений должна равняться нулю для замкнутого нивелирного хода или разности отметок начального и конечного репера для разомкнутого нивелирного хода. После этих расчетов вычисляют отметки связующих и промежуточных точек. При этом отметки промежуточных точек вычисляют с помощью понятия горизонт прибора ГП = HА + а, где HА – отметка точки А, а – отметка горизонтального луча нивелира. Hс = ГП – с. Другими словами отметка промежуточной или плюсовой точки равна горизонту прибора минус отчет по рейке в этой точке.

Рис. Схема вычисления отметок связующих и промежуточных точек.