Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
neyro21_22__26-34.docx
Скачиваний:
10
Добавлен:
27.09.2019
Размер:
447.73 Кб
Скачать

28 Постсинаптические потенциалы действия(псп).Суммация.

ПОСТСИНАПТИЧЕСКИЕ ПОТЕНЦИАЛЫ – это изменения электрич. потенциала, возникающие в непосредственно граничащих с синаптич. окончаниями участках мембраны (постсинаптич. мембраны) в ответ на действия медиатора, выделяющегося из нервного окончания при его возбуждении нервным импульсом. П. п. имеют амплитуду в несколько мВ и длительность 10—15 мс. Возбуждающие ПСП представляют собой местную деполяризацию мембраны; когда деполяризация достигает критич. величины, в клетке возникает потенциал действия. Тормозной П. п. представляет собой местную гиперполяризацию мембраны, она затрудняет или делает невозможным достижение возбуждающим П. п. критич. уровня деполяризации. П. п. являются результатом изменений ионной проницаемости постсинаптич. мембраны, содержащей хе-мовозбудимые ионные каналы. Медиатор взаимодействует с хеморецепторами этих каналов, что приводит к их открыванию. Возбуждающий П. п. возникает в том случае, когда медиатор активирует каналы, по к-рым внутрь клетки направляется поток ионов Na+, а из клетки — поток ионов К + . Чем больше порция медиатора, тем больше число активиров. каналов и выше возбуждающий П. п. Тормозной П. п.— результат активации медиатором ионных каналов, преимущественно проницаемых для ионов К+ и С1-. Поток ионов К+ наружу или ионов С1- внутрь клетки приводит к гиперполяризации мембраны. При поступлении к нервным окончаниям серий быстро следующих друг за другом импульсов П. п. суммируются друг с другом, смещая мембранный потенциал клетки в сторону деполяризации или гиперполяризации.

А) ВозбуждающийПСП

Б)ВПСП,достигший порога( -40 милиВольт ) и превратившийся в ПД

В)ТормозныйПСП

СУММАЦИЯ-это взаимодействие синап-тич. процессов (возбуждающих и тормозных) на мембране нейрона или мышечной клетки, характеризующееся усилением эффектов раздражения до рефлекторной реакции. На системном уровне различают С. пространственную и временную. Пространственная С. обнаруживается в случае одновременного действия неск. пространственно разделённых афферентных раздражений, каждое из к-рых неэффективно для разных рецепторов одной и той же рецептивной зоны. Временная С. состоит во взаимодействии нервных влияний, приходящих с определ. интервалом к одним и тем же возбудимым структурам по одним и тем же нервным каналам. На клеточном уровне такое разграничение видов С. не оправдано, поэтому её наз. пространственно-временной. С. — один из механизмов осуществления координир. реакций организма.

Суммация возбуждения в центральных образованиях рефлекторной дуги. Два раздражения, раздельно приложенные к различным участкам кожи (опускание линий 1 и 2), не вызывают рефлекторного ответа. При нанесении двух раздражений одновременно наступает сильный чеса-тельный рефлекс (верхняя запись).

29 Локальные тормозные нейронные сети.Пре и постсинаптическое торможение.

Координирующая функция локальных нейронных сетей помимо усиления может выражаться и в ослаблении слишком интенсивной активности нейронов за счет их торможения. Торможение, как особый нервный процесс, характеризуется отсутствием способности к активному распространению по нервной клетке и может быть представлено двумя формами — первичным и вторичным торможением.

Рис. Реципрокное (А), пресинаптическое (Б) и возвратное (В) торможение в локальных нейронных цепях спинного мозга

1 — мотонейрон, 2 — тормозный интернейрон, 3 — афферентные терминали.

Первичное торможение обусловлено наличием специфических тормозных структур и развивается первично без предварительного возбуждения. Примером первичного торможения является так называемое реципрокное торможение мыщц—антагонистов, обнаруженное в спинальных рефлекторных дугах (рис). Суть явления состоит в том, что если активируются проприорецепторы мышцы—сгибателя, то они через первичные афференты одновременно возбуждают мотонейрон данной мышцы—сгибателя и через коллатераль афферентного волокна — тормозный вставочный нейрон. Возбуждение вставочного нейрона приводит к постсинаптическому торможению мотонейрона антагонистической мышцы—разгибателя, на теле которого аксон тормозного интернейрона формирует специализированные тормозные синапсы. Реципрокное торможение играет важную роль в автоматической координации двигательных актов.

Другим примером первичного торможения является открытое Б. Реншоу возвратное торможение (рис.). Оно осуществляется в нейронной цепи, которая состоит из мотонейрона и вставочного тормозного нейрона — клетки Реншоу. Импульсы от возбужденного мотонейрона через отходящие от его аксона возвратные коллатерали активируют клетку Реншоу, которая в свою очередь вызывает торможение разрядов данного мотонейрона. Это торможение реализуется за счет функции тормозных синапсов, которые клетка Реншоу образует на теле активирующего ее мотонейрона. Таким образом, из двух нейронов формируется контур с отрицательной обратной связью, позволяющий стабилизировать частоту разрядов моторной клетки и подавить идущую к мышцам избыточную импульсацию.

В ряде случаев клетки Реншоу формируют тормозные синапсы не только на активирующих их мотонейронах, но и на соседних мотонейронах со сходными функциями. Осуществляемое через эту систему торможение окружающих клеток называется латеральным.

Торможение по принципу отрицательной обратной связи встречается не только на выходе, но и на входе моторных центров спинного мозга. Явление подобного рода описано в моносинаптических соединениях афферентных волокон со спинальными мотонейронами, торможение которых при данной ситуации не связано с изменениями в постсинаптической мембране. Последнее обстоятельство позволило определить эту форму торможения как пресинаптическое. Оно обусловлено наличием вставочных тормозных нейронов, к которым подходят коллатерали афферентных волокон (рис). В свою очередь, вставочные нейроны формируют аксо—аксональные синапсы на афферентных терминалях, являющихся пресинаптическими по отношению к мотонейронам. В случае избыточного притока сенсорной информации с периферии происходит активация тормозных интернейронов, которые через аксо—аксональные синапсы вызывают деполяризацию афферентных терминалей и, таким образом, уменьшают количество выделяемого из них медиатора, а следовательно, и эффективность синаптической передачи. Электрофизиологическим показателем этого процесса является снижение амплитуды регистрируемых от мотонейрона ВПСП. Вместе с тем никаких признаков изменений ионной проницаемости или генерации ТПСП в мотонейронах не наблюдается.

Вопрос о механизмах пресинаптического торможения является довольно сложным. По—видимому, медиатором в тормозном аксо—аксональном синапсе является ГАМК, которая вызывает деполяризацию афферентных терминалей за счет увеличения проницаемости их мембраны для ионов Сl . Деполяризация снижает амплитуду потенциалов действия в афферентных волокнах и тем самым уменьшает квантовый выброс медиатора в синапсе. Другой возможной причиной деполяризации терминалей может быть повышение наружной концентрации ионов K+ при длительной активации афферентных входов. Следует отметить, что феномен пресинаптического торможения обнаружен не только в спинном мозгу, но и в других отделах ЦНС.

В рассказе о координирующей роли торможения в локальных нейронных цепях, следует упомянуть еще об одной форме торможения — вторичном торможении, которое возникает без участия специализированных тормозных структур как следствие избыточной активации возбуждающих входов нейрона.

Торможение вторичное играет предохранительную роль и возникает при чрезмерной активации центральных нейронов в полисинаптических рефлекторных дугах. Оно выражается в стойкой деполяризации клеточной мембраны, превышающей критический уровень и вызывающей инактивацию Na—каналов, ответственных за генерацию потенциалов действия. Таким образом, процессы торможения в локальных нейронных сетях уменьшают избыточную активность и участвуют в поддержании оптимальных режимов импульсной активности нервных клеток.

30 ФУНКЦИИ СПИННОГО МОЗГА.

31 ФУНКЦИИ ПРОДОЛГОВАТОГО МОЗГА.

Продолговатый мозг (Myelencephalon, Medulla oblongata) — отдел ствола головного мозга.

  1. Защитные рефлексы (например, кашель, чихание).

  2. Жизненно важные рефлексы (например, дыхание).

  3. Регулирование сосудистого тонуса.

Рефлекторные центры продолговатого мозга:

  1. пищеварение

  2. сердечная деятельность

  3. дыхание

  4. защитная (кашель, чиханье и тому подобное)

  5. центры регуляции тонуса скелетных мышц для поддержания позы человека.

  6. укорочение или удлинение времени спинального рефлекса

Ретикулярная формация 

В ретикулярной (сетевидной) формации расположены центры различных сложных рефлекторных актов: дыхания, кровообращения, также кашля, чихания, рвоты, зевоты. В продолговатом мозге особое значение приобретает система блуждающего нерва, поскольку этот нерв, в отличие от остальных черепно-мозговых нервов, выходит из пределов черепа и иннервирует жизненно важные внутренние органы (легкие, сердце, желудок, кишечник) и кровеносные сосуды. . При поражении продолговатого мозга может наступить внезапная смерть в результате паралича сердца и легких в связи с прекращением рефлекторной регуляции, осуществляемой системой блуждающего нерва. Механизмы подкорковых образований, и особенно сетевидная формация как объединяющий рефлекторный центр подкорки, активизируют кору и способствуют формированию корковых функций. В ходе эволюционного развития наряду с постепенным формированием структурных связей (архитектоникой) мозга одновременно развивались и механизмы, снабжающие эти связи энергией.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]