
- •Скорость. Мгновенная скорость. Ускоренное и равномерное движение. Движение по окружности с постоянной скоростью.
- •Взаимодействие тел. Масса тела. Законы динамики Ньютона.
- •Вес и невесомость.
- •Сила упругости. Сила трения.
- •Импульс силы. Импульс тела. Закон сохранения импульса. Проявление закона сохранения импульса в природе и его применение в технике.
- •Механическая работа. Кинетическая энергия.
- •Потенциальная энергия. Закон сохранения энергии в механических процессах
- •Плотность вещества. Удельный вес. Единицы измерения.
- •10.Основные положения мкт и их опытные обоснования.
- •11.Давление газа. Основное уравнение мкт идеального газа.
- •12.Температура и её измерение. Абсолютная температура.
- •13.Уравнение состояния идеального газа (уравнение Менделеева-Клапейрона). Изопроцессы.
- •29. Электрический ток в полупроводниках. Собственная и примесная проводимость полупроводников. Полупроводниковые приборы.
- •30. Электрический ток в электролитах. Электрохимическая диссоциация. Закон Фарадея. Применение электролиза.
- •Что такое электролиз и где его применяют
- •Первый Закон Фарадея
- •31. Электрический ток в газах. Самостоятельный и несамостоятельный заряды.
- •Термическая ионизация
- •Фотоионизация
- •Самостоятельный электрический разряд
- •Ионизация электронным ударом
- •Механизм самостоятельного разряда
- •Искровой разряд. Молния
- •Тлеющий разряд
- •Электрическая дуга.
- •Коронный разряд
- •32. Электрический ток в вакууме. Вакуумный диод.
- •Термоэлектронная эмиссия
- •Вольтамперная характеристика вакуумного диода.
- •33. Магнитное поле, условия его существования. Опыт Эрстеда. Магнитное поле прямого тока, кругового тока и соленоида. Правило буравчика.
- •Геометрическая оптика. Луч. Законы отражения и преломления света.
- •Дисперсия света. Спектры электромагнитных излучений. Спектральный анализ и его применение. (?)
- •Ультрафиолетовая и инфракрасная часть спектра, их роль в природе и применение в технике. (?)
Электрическая дуга.
Если сила тока в самостоятельном газовом разряде очень велика, то удары положительных ионов и электронов могут вызвать разогревание катода и анода. С поверхности катода при высокой температуре происходит эмиссия электронов, обеспечивающая поддержание самостоятельного разряда в газе. Длительный самостоятельный электрический разряд в газах, поддерживающийся за счет термоэлектронной эмиссии с катода, называется дуговым разрядом.
Коронный разряд
В сильно неоднородных электрических полях, образующихся, например, между острием и плоскостью или между проводом и плоскостью (линия электропередачи), возникает самостоятельный разряд особого вида, называемый коронным разрядом. При коронном разряде ионизация электронным ударом происходит лишь вблизи одного из электродов, в области с высокой напряженностью электрического поля.
Применение электрических разрядов. Удары электронов, разгоняемых электрическим полем, приводят не только к ионизации атомов и молекул газа, но и к возбуждению атомов и молекул, сопровождающемуся излучением света. Световое излучение плазмы самостоятельного электрического разряда широко используется в народном хозяйстве и в быту. Это лампы дневного света и газоразрядные лампы уличного, освещения, электрическая дуга в кинопроекционном аппарате и ртутно-кварцевые лампы, применяемые в больницах и поликлиниках.
Высокая температура плазмы дугового разряда позволяет применять его для резки и сварки металлических конструкций, для плавки металлов. С помощью искрового разряда ведется обработка деталей из самых твердых материалов.
Электрический разряд в газах бывает и нежелательным явлением, с которым в технике необходимо бороться. Так, например, коронный электрический разряд с проводов высоковольтных линий электропередач приводит к бесполезным потерям электроэнергии. Возрастание этих потерь с увеличением напряжения ставит предел на пути дальнейшего увеличения напряжения в линии электропередач, тогда как для уменьшения потерь энергии на нагревание проводов такое повышение весьма желательно.
32. Электрический ток в вакууме. Вакуумный диод.
Вакуум - это такая степень разрежения газа, при которой соударений молекул практически нет. Электрический ток в вакууме невозможен, т.к. возможное количество ионизированных молекул не может обеспечить электропроводность;
Создать электрический ток в вакууме можно, если использовать источник заряженных частиц. Действие источника заряженных частиц может быть основано на явлении термоэлектронной эмиссии.
Термоэлектронная эмиссия
Термоэлектронная эмиссия - это испускание электронов твердыми или жидкими телами при их нагревании до температур, соответствующих видимому свечению раскаленного металла. Нагретый металлический электрод непрерывно испускает электроны, образуя вокруг себя электронное облако.
В равновесном состоянии число электронов, покинувших электрод, равно числу электронов, возвратившихся на него ( т.к. электрод при потере электронов заряжается положительно). Чем выше температура металла, тем выше плотность электронного облака.
Электронная лампа - это устройство, в котором применяется явление термоэлектронной эмиссии. Вакуумный диод - это двухэлектродная ( А- анод и К - катод ) электронная лампа. Внутри стеклянного баллона создается очень низкое давление. Н - нить накала, помещенная внутрь катода для его нагревания. Поверхность нагретого катода испускает электроны. Если анод соединен с + источника тока, а катод с -, то в цепи протекает постоянный термоэлектронный ток. Вакуумный диод обладает односторонней проводимостью.
Т.е. ток в аноде возможен, если потенциал анода выше потенциала катода. В этом случае электроны из электронного облака притягиваются к аноду, создавая эл.ток в вакууме.