
- •3Сила Ампера.Взаимодействие проводников с током.Определение единицы силы тока-а.
- •4Сила Лоренца.Движение заряженных частиц в электрическом и магнитном полях.Ускорители заряженных частиц.
- •5Контур с током в однородном и неоднородном магнитном поле.Магнитный момент контура.
- •6Теорема о циркуляции вектора в и ее применение для расчета магнитных полей.
- •7Работа при перемещении проводника и контура с током в магнитном поле.
- •9Явление самоиндукции.Явление взаимоиндукции.Индуктивность(физ.Смысл).
- •10Вращение рамки с током в магнитном поле.Генераторы переменного и постоянного тока.
- •11Магнитное поле в веществе.Вектор намагничивания.Напряженность магнитного поля и ее связь с индукцией.Магнитная проницаемость.Диа-,пара-, и ферромагнетики.
- •12Теория ферромагнетизма.Петля гистерезиса.Коэрцитивная сила (поле), остаточное намагничение.
- •13Свободные колебания.Диф-е ур-ие колебаний,его решение.Формула Томсона.Графики зависимости q,u,I от времени.
- •17Переменный ток.Реактивные сопротивления.Закон Ома для цепи переменного тока.Эффективные значения тока и напряжения.
- •1Свет-электромагнитная волна.Сферическая, плоская волна.Показатель преломления.Полное внутреннее отражение.
- •2Интерференция света.Опыт Юнга.Ширина полос интерференции.
- •3Интерференция в тонких пленках.Просветление оптики.
- •4Полосы равной толщины.Кольца Ньютона в отраженном и проходящем свете.Применение интерференции.
- •5Дифракция света.Принцип Гюйгенса-Френеля.Прохождение света сквозь малые отверстия(метод зон Френеля).
- •6Дифракция на круглом отверстии.Дифракция на круглом диске.
- •7Дифракция Фраунгофера на одной щели.
- •8Дифракционная решетка.Разложение света в спектр с помощью диф-решетки.
- •9Характеристики дифракционных решеток.Критерий Рэлея разрешения двух линий.Дифракция рентгеновских лучей(ф-ла Вульфа-Брэггов).
- •10Дисперсия света.Нормальная и аномальная дисперсия.
- •11Поглощение света.Закон Бугера.
- •12Поляризация света.Закон Брюстера.
17Переменный ток.Реактивные сопротивления.Закон Ома для цепи переменного тока.Эффективные значения тока и напряжения.
Переменный ток – это периодические изменения силы тока и напряжения в электрической цепи, происходящие под действием переменной ЭДС от внешнего источника
Переменный ток – это электрический ток, который изменяется с течением времени по гармоническому закону.
Мы
в дальнейшем будем изучать вынужденные
электрические колебания, происходящие
в цепях под действием напряжения,
гармонически меняющегося с частотой ω
по синусоидальному или косинусоидальному
закону:
или
,
где
u – мгновенное значение напряжения, Um
– амплитуда напряжения, ω – циклическая
частота колебаний. Если напряжение
меняется с частотой ω, то и сила тока в
цепи будет меняться с той же частотой,
но колебания силы тока не обязательно
должны совпадать по фазе с колебаниями
напряжения. Поэтому в общем случае
,где φc – разность (сдвиг) фаз между колебаниями силы тока и напряжения.
Переменный ток обеспечивает работу электрических двигателей в станках на заводах и фабриках, приводит в действие осветительные приборы в наших квартирах и на улице, холодильники и пылесосы, отопительные приборы и т.п. Частота колебаний напряжения в сети равна 50 Гц. Такую же частоту колебаний имеет и сила переменного тока. Это означает, что на протяжении 1 с ток 50 раз поменяет свое направление. Частота 50 Гц принята для промышленного тока во многих странах мира. В США частота промышленного тока 60 Гц.
Реакти́вное сопротивле́ние — электрическое сопротивление, обусловленное передачей энергии переменным током электрическому или магнитному полю (и обратно).
Реактивное
сопротивление определяет мнимую часть
импеданса:
,
где
— импеданс,
— величина активного сопротивления,
— величина реактивного сопротивления,
— мнимая единица.
В зависимости от знака величины какого-либо элемента электрической цепи говорят о трёх случаях:
— элемент
проявляет свойства индуктивности.
— элемент
имеет чисто активное сопротивление.
— элемент
проявляет ёмкостные свойства.
Величина
реактивного сопротивления может быть
выражена через величины индуктивного
и ёмкостного сопротивлений:
Если
ток является синусоидальным с циклической
частотой , а цепь содержит не только
активные, но и реактивные компоненты
(ёмкости, индуктивности), то закон Ома
обобщается; величины, входящие в него,
становятся комплексными:
где:
U = U0eiωt — напряжение или разность потенциалов,
I — сила тока,
Z = Re−iδ — комплексное сопротивление (импеданс),
R = (Ra2 + Rr2)1/2 — полное сопротивление,
Rr = ωL − 1/(ωC) — реактивное сопротивление (разность индуктивного и емкостного),
Rа — активное (омическое) сопротивление, не зависящее от частоты,
δ = − arctg (Rr/Ra) — сдвиг фаз между напряжением и силой тока.
При
этом переход от комплексных переменных
в значениях тока и напряжения к
действительным (измеряемым) значениям
может быть произведён взятием
действительной или мнимой части (но во
всех элементах цепи одной и той же!)
комплексных значений этих величин.
Соответственно, обратный переход
строится для, к примеру,
подбором такой
что
Тогда все значения токов и напряжений
в схеме надо считать как
Если ток изменяется во времени, но не является синусоидальным (и даже периодическим), то его можно представить как сумму синусоидальных Фурье-компонент. Для линейных цепей можно считать компоненты фурье-разложения тока действующими независимо.
Также необходимо отметить, что закон Ома является лишь простейшим приближением для описания зависимости тока от разности потенциалов и от сопротивления и для некоторых структур справедлив лишь в узком диапазоне значений. Для описания более сложных (нелинейных) систем, когда зависимостью сопротивления от силы тока нельзя пренебречь, принято обсуждать вольт-амперную характеристику. Отклонения от закона Ома наблюдаются также в случаях, когда скорость изменения электрического поля настолько велика, что нельзя пренебрегать инерционностью носителей заряда.