
- •Организация государственной статистики в рф.
- •Статистическое наблюдение и его этапы.
- •Основные программно-методологические вопросы статистического наблюдения.
- •Организационные вопросы статистического наблюдения.
- •Формы, виды и способы статистического наблюдения.
- •Сводка: основное содержание и задачи.
- •Сущность и классификация группировок.
- •Принципы построения группировок.
- •Построение и виды рядов распределения.
- •Графическое изображение рядов распределения.
- •Понятие статистической таблицы и ее элементов.
- •Виды таблиц.
- •Основные правила оформления и чтения таблиц.
- •Статистические графики и правила из построения.
- •Классификация графиков по видам.
- •Диаграммы сравнения. Статистические карты.
- •Статистический показатель и его виды.
- •Абсолютные показатели, единицы их измерения.
- •Относительные показатели.
- •Понятие среднего показателя.
- •Средняя арифметическая и ее свойства.
- •Средняя гармоническая, средняя геометрическая.
- •Структурные средние.
- •Показатели вариации: размах вариации, дисперсия, среднее квадратическое отклонение, коэффициент вариации.
- •Понятие и виды индексов.
- •Индивидуальные индексы.
- •Сводный индекс товарооборота, сводный индекс цен, сводный индекс физического объема реализации.
- •Сводный индекс себестоимости, сводный индекс физического объема продукции, сводный индекс затрат на производство.
- •Применение индексного метода при анализе изменений в производительности труда.
- •Сводные индексы в среднеарифметической и среднегармонической формах
- •Индексные системы за ряд последовательных периодов.
- •Индексы постоянного и переменного состава.
- •Территориальные (пространственные) индексы.
- •Основные понятия исследования связей между явлениями: функциональная и статистическая зависимость, поле корреляции.
- •Корреляционный анализ количественных признаков.
- •Корреляционный анализ порядковых переменных: ранговая корреляция.
- •Методы регрессивного анализа: метод наименьших квадратов, метод наименьших модулей.
- •Двумерное линейное уравнение регрессии.
- •Классификация рядов динамики и методы их построения.
- •Показатели изменения уровней рядов динамики.
- •Компоненты временных рядов.
- •Сглаживание временных рядов с помощью скользящей средней.
- •Применение моделей кривых роста для анализа и прогнозирования.
Индексные системы за ряд последовательных периодов.
Часто в ходе экономического анализа изменение индексируемых величин изучают не за два, а за ряд последовательных периодов. Следовательно, возникает необходимость построения индексов за ряд этих последовательных периодов, которые образуют индексные системы. Такие системы характеризуют изменения, происходящие в изучаемом явлении в течение исследуемого периода времени.
В зависимости от базы сравнения индексы бывают цепными и базисными.
В системе базисных индексов сравнения уровней индексируемого показателя в каждом индексе производится с уровнем базисного периода, а в системе цепных индексов уровни индексируемого показателя сопоставляются с уровнем предыдущего периода.
Индексы постоянного и переменного состава.
Индексный метод широко применяется для изучения динамики средних величин и выявления факторов, влияющих на динамику средних. С этой целью исчисляется система взаимосвязанных индексов: переменного, постоянного состава и структурных сдвигов. Индекс переменного состава Iпер представляет собой отношение двух взвешенных средних величин, характеризующее изменение индексируемого (осредняемого) показателя.
Величина этого индекса характеризует изменение средней взвешенной за счет влияния двух факторов: осредняемого показателя у отдельных единиц совокупности и структуры изучаемой совокупности. Индекс постоянного (фиксированного) состава Iфикс представляет собой отношение средних взвешенных с одними и теми же весами (т.е. при постоянной структуре).
Индекс постоянного состава учитывает изменение только индексируемой величины и показывает средний размер изменения изучаемого показателя у единиц совокупности. Индекс структурных сдвигов Iстр характеризует влияние изменения структуры изучаемого явления на динамику среднего уровня индексируемого показателя.
Под структурными изменениями понимается изменение доли отдельных групп единиц совокупности к общей их численности. Система взаимосвязанных индексов при анализе динамики средних величин имеет вид:
Доля
отдельной группы:
I пост.соства тождественен сводному агрегатному индексу цен Ip Абсолютное изменение среднего уровня качественного показателя под влиянием каждого фактора в отдельности, а также их совместного изменения,определяется как разность делимого и делителя по соответствующему индексу
Территориальные (пространственные) индексы.
Территориальные индексы представляют собой разновидность относительных величин сравнения, когда сопоставляются сложные показатели, относящиеся к одному и тому же периоду времени, но к разным территориям (городам, районам, областям, государствам). На основе территориальных индексов выполняются международные сопоставления.
Территориальный индекс товарооборота — это отношение суммы выручки от продажи в одном из районов к аналогичному показателю в другом. Один из районов (например, Б) берется за базу сравнения т.е.
Различие объемов товарооборота вызвано различием ассортимента и количества проданных товаров, а также цен.
Территориальный индекс физического объема товарооборота рассчитывается по следующей формуле:
где р — средняя межрайонная цена товара каждого вида,
Территориальный индекс цен определяется:
где q - суммарный по двум районам объем продаж каждого вида товара.
Такие сложные взвешивающие показатели применяются для того, чтобы результаты расчета были обратимыми, т. е. чтобы выполнялись соотношения:
и
Условия индексной модели могут нарушаться, хотя и не очень существенно. Использование таких территориальных индексов для анализа абсолютной разницы товарооборотов дает в только приближенный результат.
Территориальные индексы можно также рассчитывать:
с использованием соизмерителей только района А или только района Б;
как среднюю геометрическую из двух территориальных индексов, рассчитанных с разными территориальными весами.