
- •Вопрос 20. Электрический ток. Плотность тока. Уравнение непрерывности.
- •Вопрос 21. Закон Ома в интегральной и дифференциальной форме. Сопротивление проводников.
- •Вопрос 22. Тепловое действие тока. Закон Джоуля – Ленца в дифференциальной и интегральной форме.
- •Вопрос 41. Плоская электромагнитная волна. Связь векторов напряженности электрического и магнитного поля.
- •Вопрос 42. Плотность и поток энергии электромагнитного поля.
- •Вопрос 4. Метод векторных диаграмм. Дифракция на круглом отверстии и диске.
- •Вопрос 8. Поляризация при отражении и преломлении света. Закон Брюстера. Двойное лучепреломление.
- •Вопрос 9. Интерференция поляризованного света.
- •1. Электрическое поле в вакууме. Закон Кулона. Закон сохранения заряда. Напряженность электрического поля. Напряженность поля точечного заряда. Принцип суперпозиции. Силовые линии поля.
- •Электростатическое поле бесконечной проводящей плоскости
- •5. Электроемкость уединенного проводника. Пример вычисления емкости шарового проводника. Конденсаторы. Емкость конденсатора. Вычисление емкости плоского конденсатора, сферического конденсатора.
- •6. Диполь в однородном электрическом поле. Электрический дипольный момент. Момент сил, действующий на диполь в однородном электрическом поле.
- •8. Энергия системы зарядов. Энергия плоского конденсатора. Энергия электростатического поля. Объемная плотность энергии.
- •12. Магнитное взаимодействие токов. Сила Ампера. Вычисление силы взаимодействия двух прямолинейных проводников с током.
- •13. Действие магнитного поля на движущиеся заряды. Сила Лоренца. Движение заряженных частиц в электрическом и магнитном полях.
- •14. Контур с током в однородном и неоднородном магнитных полях. Магнитный момент контура с током.
- •15. Магнитный поток. Работа при перемещении контура с током в магнитном поле.
- •16. Явление электромагнитной индукции. Закон электромагнитной индукции Фарадея. Правило Ленца. Генератор переменного тока, пример расчета эдс индукции для генератора переменного тока.
- •17. Явление самоиндукции и взаимной индукции. Индуктивность контура. Пример вычисления индуктивности соленоида. Эдс самоиндукции. Токи замыкания и размыкания цепи.
- •18. Природа магнетизма атома. Магнитный момент атома и его механический момент. Гиромагнитное отношение. Момент сил, действующий на атом в магнитном поле.
- •20. Энергия магнитного поля. Плотность энергии магнитного поля.
- •24. Переменный ток. Расчет реактивного сопротивления емкости, индуктивности. Закон Ома для переменного тока.
- •25. Уравнения Максвелла в интегральной и дифференциальной формах, их физический смысл. Вихревое электрическое поле. Ток смещения. Электромагнитное поле.
- •Оптическая разность хода.
- •18.1.2.1. Условия максимума и минимума на разность фаз δ
- •18.1.2.2. Оптическая разность хода
- •18.1.2.3. Условия максимума и минимума на оптическую разность хода
- •30. Интерференция при отражении от тонких пленок. Пример расчета интерференционной картины для плоскопараллельной пластинки.
- •31. Кольца Ньютона. Радиусы темных и светлых колец.
- •32. Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля. Радиусы зон Френеля. Дифракция на круглом отверстии и непрозрачном диске.
- •34. Дифракционная решетка как спектральный прибор. Разрешающая способность дифракционной решетки. Угловая дисперсия.
- •35. Поляризация света. Степень поляризации. Закон Малюса.
- •36. Поляризация света при отражении и преломлении света на границе раздела двух сред.
12. Магнитное взаимодействие токов. Сила Ампера. Вычисление силы взаимодействия двух прямолинейных проводников с током.
Магнитные явления были известны еще в древнем мире.
Опыты показали, что на магнитную стрелку, расположенную вблизи проводника с током, действуют силы, которые стремятся повернуть стрелку. Французский физик А. Ампер наблюдал силовое взаимодействие двух проводников с токами и установил закон взаимодействия токов.
По современным представлениям, проводники с током оказывают силовое действие друг на друга не непосредственно, а через окружающие их магнитные поля.
Источниками магнитного поля являются движущиеся электрические заряды (токи). Магнитное поле возникает в пространстве, окружающем проводники с током, подобно тому, как в пространстве, окружающем неподвижные электрические заряды, возникает электрическое поле.
Изолированных магнитных зарядов не существует. Магнитное поле, в отличие от электрического, оказывает силовое действие только на движущиеся заряды (токи).
Для
описания магнитного поля необходимо
ввести силовую характеристику поля,
аналогичную вектору напряженности
электрического поля. Такой характеристикой
является вектор магнитной индукции
Вектор
магнитной индукции
определяет
силы, действующие на токи или движущиеся
заряды в магнитном поле.
За положительное направление вектора принимается направление от южного полюса S к северному полюсу N магнитной стрелки, свободно устанавливающейся в магнитном поле. Таким образом, исследуя магнитное поле, создаваемое током или постоянным магнитом, с помощью маленькой магнитной стрелки, можно в каждой точке пространства определить направление вектора
Обратите
внимание на аналогию магнитных полей
постоянного магнита и катушки с током.
Линии магнитной индукции всегда замкнуты,
они нигде не обрываются. Это означает,
что магнитное поле не имеет источников
– магнитных зарядов. Силовые поля,
обладающие этим свойством, называются
вихревыми.
Взаимодействие токов вызывается их магнитными полями: магнитное поле одного тока действует силой Ампера на другой ток и наоборот.
Как показали опыты Ампера, сила, действующая на участок проводника, пропорциональна силе тока I, длине Δl этого участка и синусу угла α между направлениями тока и вектора магнитной индукции:
|
F ~ IΔl sin α. |
|
Эта сила называется силой Ампера. Она достигает максимального по модулю значения Fmax, когда проводник с током ориентирован перпендикулярно линиям магнитной индукции. Модуль вектора определяется следующим образом:
Модуль вектора магнитной индукции равен отношению максимального значения силы Ампера, действующей на прямой проводник с током, к силе тока I в проводнике и его длине Δl:
|
|
|
В общем случае сила Ампера выражается соотношением:
|
|
|
Это соотношение принято называть законом Ампера.
В системе единиц СИ за единицу магнитной индукции принята индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила Ампера 1 Н. Эта единица называется тесла (Тл).
|
|
|
Тесла – очень крупная единица. Магнитное поле Земли приблизительно равно 0,5·10–4 Тл. Большой лабораторный электромагнит может создать поле не более 5 Тл.
Сила Ампера направлена перпендикулярно вектору магнитной индукции и направлению тока, текущего по проводнику. Для определения направления силы Ампера обычно используют правило левой руки.
Р
исунок
слева
поясняет закон взаимодействия параллельных
и антипараллельных токов
в
прямолинейных проводниакх с током.
Магнитное взаимодействие параллельных проводников с током используется в системе СИ для определения единицы силы тока – ампера:
Ампер – сила неизменяющегося тока, который при прохождении по двум параллельным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызвал бы между этими проводниками силу магнитного взаимодействия, равную 2·10–7 H на каждый метр длины.
Формула, выражающая закон магнитного взаимодействия параллельных токов, имеет вид:
|
|