
- •1. Задачи и методы термодинамики. Современное состояние и перспективы развития теплоэнергетики.
- •2.Термодинамическая система. Параметры состояния термодинамической системы. Уравнение состояния.
- •3. Термодинамический процесс. Равновесные, неравновесные, обратимые и необратимые процессы.
- •4. Первый закон термодинамики. Энтальпия.
- •6 . Цикл Карно. T-s - диаграмма. Изображение процессов в t-s- диаграмма.
- •7. Второй закон термодинамики. Изменение энтропии в термодинамических процессах. Статистическое толкование 2-ого закона термодинамики
- •8. Теплоемкость газов. Зависимость теплоемкости от температуры и процесса.
- •9. Политропный процесс. Обобщающее значение политропного процесса.
- •14. Паросиловые установки.
- •15.Элементарный и сложный теплообмен. Сложный теплообмен
- •16. Основной закон теплопроводности.
- •1.Геометрические; 2.Физические; 3.Граничные; 4. Начальные.
- •18. Стационарная теплопроводность через плоскую стенку
- •19. Стационарная теплопроводность через цилиндрическую стенку
- •20. Теплопередача через плоскую однослойную стенку.
- •22.Физическая сущность явления теплоотдачи.
- •23. . Основы теории подобия. (тп)
- •24) Теплоотдача при вынужденном течении по трубам и каналам.
- •29. Лучистый теплообмен между твердыми телами.
3. Термодинамический процесс. Равновесные, неравновесные, обратимые и необратимые процессы.
Изменение состояния термодинамической системы по времени называется термодинамическим процессом. Так, при перемещении поршня в цилиндре объем, а с ним давление и температура находящегося внутри газа будут изменяться, будет совершаться процесс расширения или сжатия газа. Система, выведенная из состояния равновесия, и предоставленная при постоянных параметрах окружающей среды самой себе, через некоторое время вновь придет в равновесное состояние, соответствующее этим параметрам. Такое самопроизвольное (без внешнего воздействия) возвращение системы в состояние равновесия называется релаксацией, а промежуток времени, в течение которого система возвращается в состояние равновесия, называется временем релаксации. Для разных процессов оно различно.
Термодинамический процесс называется равновесным, если все параметры системы при его протекании меняются достаточно медленно по сравнению с соответствующим процессом релаксации. В этом случае система фактически все время находится в состоянии равновесия с окружающей средой, чем и определяется название процесса.
Чтобы процесс был равновесным, скорость изменения параметров системы dA/dx должна удовлетворять соотношению dA/dT<<Cpeл , где А — параметр, наиболее быстро изменяющийся в рассматриваемом процессе; Срел, — скорость изменения этого параметра в релаксационном процессе. Равновесный процесс состоит из непрерывного ряда последовательных состояний равновесия, поэтому в каждой его точке состояние термодинамической системы можно описать уравнением состояния данного рабочего тела.
Процессы, не удовлетворяющие условию dA/dT<<Cpeл протекают с нарушением равновесия, т. е. являются неравновесными. Если, например, быстро увеличить температуру окружающей среды, то газ в цилиндре будет постепенно прогреваться через его стенки, релаксируя к состоянию равновесия, соответствующему новым параметрам окружающей среды. В процессе релаксации газ не находится в равновесии с окружающей средой и его нельзя характеризовать уравнением состояния.
4. Первый закон термодинамики. Энтальпия.
Первый закон термодинамики представляет собой частный случай всеобщего закона сохранения и превращения энергии применительно к тепловым явлениям. Закон сохранения утверждает, что энергия не исчезает и не возникает вновь, она лишь переходит из одной формы в другую, причем убыль энергии одного вида даст эквивалентное количество энергии другого вида. В числе первых ученых, утверждавших принцип сохранения материи и энергии, был наш соотечественник М. В. Ломоносов.
δQ = dU + δL, т. е. теплота, сообщаемая системе, идет на приращение ее внутренней энергии и на совершение внешней работы.
Полученное уравнение является математическим выражением первого закона термодинамики. Каждый из трех членов этого соотношения может быть положительным, отрицательным или равным нулю.
Рассмотрим некоторые частные случаи:
1. δQ = 0 — теплообмен системы с окружающей средой отсутствует, т. е. теплота к системе не подводится и от нее не отводится. Процесс без теплообмена называется адиабатным. Для него уравнение принимает вид δL= - dU.
2. δL =0 — при этом объем тела не изменяется, dV=0. Такой процесс называется изохорным, для него δQ=dU, количество теплоты, подведенное к системе при постоянном объеме, равно увеличению внутренней энергии данной системы.
3. dU=0 внутренняя энергия системы не изменяется и δQ=δL, т. е. сообщаемая системе теплота превращается в эквивалентную ей внешнюю работу.
Энтальпия. В термодинамике важную роль играет сумма внутренней энергии системы U и произведения давления системы р на ее объем V, называемая энтальпией и обозначаемая Н: H=U+pV.
Так как входящие в нее величины являются функциями состояния, то и сама энтальпия является функцией состояния. Так же как внутренняя энергия, работа и теплота, она измеряется в джоулях (Дж).
Изменение энтальпии в любом процессе определяется только начальным и конечным состояниями тела и не зависит от характера процесса.
5. Термодинамический анализ циклов. Прямые и обратные циклы. Термодинамические циклы — круговые процессы в термодинамике, то есть такие процессы, в которых начальные и конечные параметры, определяющие состояние рабочего тела (давление, объём, температура, энтропия) совпадают.
Термодинамические циклы используются в тепловых машинах для превращения тепловой энергии (то есть, внутренней энергии) в механическую работу, а также для охлаждения (при использовании обратного цикла). Тепловая машина состоит из рабочего тела, которое и проходит цикл, нагревателя и холодильника (с помощью которых меняется состояние рабочего тела).
Обратимым называют цикл, который можно провести как в прямом, так и в обратном направлении в адиабатически изолированной (без теплообмена с окружающей средой) системе. Суммарная энтропия системы при прохождении такого цикла не меняется. Единственным обратимым циклом для машины, состоящей только из рабочего тела, нагревателя и холодильника, является Цикл Карно. Существуют также циклы Стирлинга и Эрикссона, в которых обратимость достигается путём введения дополнительного прибора — регенератора. Обратимые циклы обладают наибольшей эффективностью.
В прямом термодинамическом цикле часть теплоты, сообщаемой рабочему телу, преобразуется в полезную работу, а в обратном термодинамическом цикле за счёт работы осуществляется передача теплоты от тел менее нагретых к более нагретым. Прямые термодинамические циклы совершаются, например, в тепловых двигателях, обратные — в холодильных машинах.