
- •Определение переходного процесса. Законы коммутации. Обобщенные законы коммутации. Доказательство законов коммутации.
- •Обобщенные законы коммутации.
- •Некорректные ну.
- •Методы расчета переходных процессов.
- •Классический метод расчета переходных процессов. Составление характеристических уравнений классическим методом.
- •Решение линейных дифференциальных уравнений классическим методом.
- •Определение постоянных интегрирования в классическом методе.
- •Составление характеристических уравнений путем использования выражения для входного сопротивления цепи на переменном токе.
- •Переходные процессы в цепи первого порядка с r,l.
- •Переходные процессы в цепи первого порядка с r,c. Включение цепи с резистором и катушкой на постоянное напряжение
- •5.4.3. Включение цепи с резистором и катушкой на синусоидальное напряжение
- •Свойства корней характеристического уравнения второго порядка.
- •Переходные процессы в цепи второго порядка при последовательном включении r,l,c для постоянной эдс.
- •Переходные процессы в цепи второго порядка при последовательном включении r,l,c для гармонической эдс.
- •Угловая частота свободных колебаний. Коэффициент затухания.
- •4. Изображение по Лапласу функции равно
- •5. Единичная функция обладает фильтрующим действием:
- •Переходная и импульсная переходная функции.
- •Вывод формулы (интеграла) наложения.
- •Вывод формулы для интеграла Дюамеля.
- •Изображение постоянной, показательной функции.
- •Изображение первой и второй производной.
- •Закон Ома в операторной форме.
- •Законы Кирхгофа в операторной форме.
- •Способы перехода от изображений к оригиналам.
- •Переход от изображений к оригиналам с помощью формул разложения.
- •Последовательность расчета переходных процессов операторным методом.
- •Формулы включения.
- •Сведения расчета переходного процесса операторным методом к расчету с нулевыми начальными условиями.
- •Сравнение различных методов расчета переходных процессов.
- •Электропроводность полупроводников. Электронно-дырочный переход (p-n). Носители заряда в примесных полупроводниках.
- •Полупроводниковые диоды. Вольтамперные характеристики.
- •Полупроводниковые стабилитроны. Вольтамперные характеристики.
- •Вольт-амперная характеристика
- •Туннельный диод. Вольтамперные характеристики.
- •Обращенные диоды. Вольтамперные характеристики.
- •Биполярные транзисторы. Определение, принцип действия.
- •Вольтамперные характеристики биполярных транзисторов.
- •Режимы работы биполярного транзистора.
- •Ключевые режимы работы биполярного транзистора.
- •Униполярные транзисторы. Определение, классификация.
- •Устройство униполярного транзистора с изолированным затвором.
- •Устройство униполярного транзистора с p-n переходом.
- •Выходные характеристики униполярного транзистора с управляющим p-n переходом.
- •Усилительный каскад на биполярном транзисторе, включенный по схеме с общей базой.
- •Операционные усилители, определение, классификация.
- •Активные фильтры. Определение, классификация по частотным характеристикам.
Устройство униполярного транзистора с изолированным затвором.
Полевой транзистор с изолированным затвором – это транзистор, имеющий один или несколько затворов, электрически изолированных от проводящего канала.
Металлический
затвор отделен от полупроводникового
канала тонким слоем диэлектрика.
Поскольку металлический затвор отделен
от полупроводника слоем диэлектрика,
то входное сопротивление таких
транзисторов велико (для современных
транзисторов достигает
).
Полевые транзисторы с изолированным затвором бывают двух типов:
со встроенным (собственным) каналом;
с индуцированным (инверсионным) каналом.
Устройство униполярного транзистора с p-n переходом.
Такой транзистор имеет два невыпрямляющих контакта к области, по которой проходит управляемый ток основных носителей заряда, и один или два управляющих электронно-дырочных перехода, смещённых в обратном направлении (см. рис. 1). При изменении обратного напряжения на p-n переходе изменяется его толщина и, следовательно, толщина области, по которой проходит управляемый ток основных носителей заряда. Область, толщина и поперечное сечение которой управляется внешним напряжением на управляющем p-n переходе и по которой проходит управляемый ток основных носителей, называют каналом. Электрод, из которого в канал входят основные носители заряда, называют истоком. Электрод, через который из канала уходят основные носители заряда, называют стоком. Электрод, служащий для регулирования поперечного сечения канала, называют затвором.
Конструкция полевого транзистора (ПТ).
Как видно из рис.1, в ПТ три слоя: п-, р-, и п-типа (может быть и наоборот: р-, п-, и р - тип). Между стоком (на рис. обозначен как С) и истоком (И) прикладывается напряжение, такое, что заряды (в данном случае дырки) вытекают из истока и втекают в сток. Значит, к стоку прикладывается отрицательное напряжение, исток заземляется. Из-за наличия р-п переходов область канала сужается, причём на самом деле даже больше, так как р-п переход толстый, у него есть область объёмного заряда (ООЗ), отмеченная на рис. пунктирной линией. К затвору (З) прикладывается положительное напряжение, так что р-п переходы смещены в обратном направлении, и ООЗ расширяется, а ширина канала сужается. Это приводит к уменьшению тока канала (потока зарядов от истока к стоку) – это регулировка тока, которая и даёт режим усиления.
Выходные характеристики униполярного транзистора с управляющим p-n переходом.
Выходная и переходная характеристики ПТ представлены на рис. Как кажется при простом рассмотрении, характеристики ток стока – напряжение сток-исток должны быть прямыми, и лишь наклон их станет тем меньше, чем больше напряжение затвор-исток. Это потому, что при увеличении напряжения на затворе сопротивление канала увеличивается. Однако кривые быстро начинают насыщаться, выходят почти на горизонтальный участок.
Следующая характеристика, снятая при некотором обратном напряжении затвора Uобр ЗИ, когда запирающий слой имеет большую толщину при тех же значениях UСИ будет более пологой на начальном участке и насыщение наступит раньше (при меньших значениях Uобр СИ=UЗИ0 -Uобр ЗИ).