- •Определение переходного процесса. Законы коммутации. Обобщенные законы коммутации. Доказательство законов коммутации.
- •Обобщенные законы коммутации.
- •Некорректные ну.
- •Методы расчета переходных процессов.
- •Классический метод расчета переходных процессов. Составление характеристических уравнений классическим методом.
- •Решение линейных дифференциальных уравнений классическим методом.
- •Определение постоянных интегрирования в классическом методе.
- •Составление характеристических уравнений путем использования выражения для входного сопротивления цепи на переменном токе.
- •Переходные процессы в цепи первого порядка с r,l.
- •Переходные процессы в цепи первого порядка с r,c. Включение цепи с резистором и катушкой на постоянное напряжение
- •5.4.3. Включение цепи с резистором и катушкой на синусоидальное напряжение
- •Свойства корней характеристического уравнения второго порядка.
- •Переходные процессы в цепи второго порядка при последовательном включении r,l,c для постоянной эдс.
- •Переходные процессы в цепи второго порядка при последовательном включении r,l,c для гармонической эдс.
- •Угловая частота свободных колебаний. Коэффициент затухания.
- •4. Изображение по Лапласу функции равно
- •5. Единичная функция обладает фильтрующим действием:
- •Переходная и импульсная переходная функции.
- •Вывод формулы (интеграла) наложения.
- •Вывод формулы для интеграла Дюамеля.
- •Изображение постоянной, показательной функции.
- •Изображение первой и второй производной.
- •Закон Ома в операторной форме.
- •Законы Кирхгофа в операторной форме.
- •Способы перехода от изображений к оригиналам.
- •Переход от изображений к оригиналам с помощью формул разложения.
- •Последовательность расчета переходных процессов операторным методом.
- •Формулы включения.
- •Сведения расчета переходного процесса операторным методом к расчету с нулевыми начальными условиями.
- •Сравнение различных методов расчета переходных процессов.
- •Электропроводность полупроводников. Электронно-дырочный переход (p-n). Носители заряда в примесных полупроводниках.
- •Полупроводниковые диоды. Вольтамперные характеристики.
- •Полупроводниковые стабилитроны. Вольтамперные характеристики.
- •Вольт-амперная характеристика
- •Туннельный диод. Вольтамперные характеристики.
- •Обращенные диоды. Вольтамперные характеристики.
- •Биполярные транзисторы. Определение, принцип действия.
- •Вольтамперные характеристики биполярных транзисторов.
- •Режимы работы биполярного транзистора.
- •Ключевые режимы работы биполярного транзистора.
- •Униполярные транзисторы. Определение, классификация.
- •Устройство униполярного транзистора с изолированным затвором.
- •Устройство униполярного транзистора с p-n переходом.
- •Выходные характеристики униполярного транзистора с управляющим p-n переходом.
- •Усилительный каскад на биполярном транзисторе, включенный по схеме с общей базой.
- •Операционные усилители, определение, классификация.
- •Активные фильтры. Определение, классификация по частотным характеристикам.
Обращенные диоды. Вольтамперные характеристики.
Обращенные диоды являются разновидностью туннельных. Они имеют меньшую величину туннельного тока (1Р = — 0,5 — 0,01 ма) и используются как пассивные элементы радиотехнических устройств: как детекторы и смесители для работы при Малом Сигнале
Эквивалентные схемы туннельных и обращенных диодов идентичны.
Инерционность обращенного диода определяется временем перезаряда его емкости и зависит от параметров эквивалентной схемы. Как правило, время переключения обращенного диода не превышает 1 нсек.
Вольтамперная характеристика обращенного диода: U — напряжение на диоде; I — ток через диод.
Вследствие большей кривизны вольтамперной характеристики обращенные диоды могут работать при меньшем уровне сигнала, чем обычные детекторы, — и меньшем уровне гетеродина (—100 мквт), чем обычные смесительные диоды.
Биполярные транзисторы. Определение, принцип действия.
Биполярный транзистор - трехэлектродный полупроводниковый прибор с двумя, расположенными на близком расстоянии параллельными pn - переходами.
транзистор состоит из трех основных областей: эмиттерной, базовой и коллекторной. К каждой из областей имеется омический контакт. Для того, чтобы транзистор обладал усилительными свойствами, толщина базовой области должна быть меньше диффузионной длины неосновных носителей заряда, т.е. большая часть носителей, инжектированных эмиттером, не должна рекомбинировать по дороге к коллектору.
Рис. 1. Структура и обозначения p-n-p и n-p-n биполярных транзисторов.
На границах между p и n областями возникает область пространственного заряда (ОПЗ), причем электрические поля в эмиттерном и коллекторном переходах направлены так, что для p-n-p транзистора базовая область создает энергетический барьер для дырок, стремящихся перейти из эмиттера в коллектор, для n-p-n транзистора базовая область создает аналогичный барьер для электронов эмиттерной области. При отсутствии внешнего смещения на переходах потоки носителей заряда через переходы скомпенсированы и токи через электроды транзистора отсутствуют.
Рис. 2. Диаграммы, поясняющие работу биполярных транзисторов: (а) смещение на переходах отсутствует; (б) эмиттерный переход смещен в прямом направлении, коллекторный в обратном.
Для того, чтобы транзистор работал в режиме усиления входного сигнала, эмиттерный переход смещают в прямом направлении, коллекторный в обратном, соответствующие диаграммы показаны на рис. 2.
Приложенное к эмиттерному переходу смещение уменьшает потенциальный барьер, и из эмиттера в базу инжектируются дырки (в p-n-p транзисторе) или электроны (в n-p-n транзисторе), инжектированные носители проходят и достигают коллектора и создают коллекторный ток.
Поскольку коллекторный переход расположен близко от эмиттерного, основная часть инжектированных эмиттером носителей достигает коллектора, таким образом, инжекционный ток эмиттера примерно равен току коллектора.
В то же время мощность, затраченная во входной эмиттерной цепи на создание тока, меньше мощности, которая выделяется в выходной коллекторной цепи, т.е. имеет место усиление мощности.
