- •1. Представление изображений при помощи цифровых методов отображения. Основные аспекты, используемая техника и технологии.
- •2. Что такое дискретизация изображений? Методы построения изображений в цифровой технике.
- •3. Какие бывают дефекты фотографических, сканированных и телевизионных изображений?
- •4. Что такое линеаризация и эквализация?
- •5. Что понимается под фильтрацией изображений? Глобальная фильтрация
- •7. Что понимается под изображением?
- •8. Что такое 3d изображение? 3d телевидение и кино.
- •11. Какое оборудование применяется для ввода цифровой информации в компьютер?
- •12. В чем заключается редактирование изображений цифровыми методами?
- •13. Какие существуют инструменты структурного редактирования цифровых изображений?
- •14. Что такое сигнал и какими свойствами он обладает? Классификация сигналов.
- •Классификация сигналов
- •15. Что такое спектральное представление сигнала?
- •16. Какие существуют особенности использования методов цифровой обработки аналоговых сигналов?
- •17. Что такое кодирование и декодирование сигналов? Какие способы кодирования используются для цифровой обработки звуковой, видео и графической информации?
- •18. Какие существуют особенности использования методов обработки цифровых сигналов?
- •19. Как осуществляется объединение снимков с различным разрешением?
- •20. Применение цифровых методов обработки космических изображений при ландшафтных исследованиях.
- •22. Какие технологии используются при 3d сканировании? Методы обработки трехмерных изображений?
- •23. Что такое триангуляция 3d точек? Применяемые технологии и методы.
- •24. Применение 3х мерного моделирования в медицине и стоматологии? Используемое программное обеспечение и оборудование?
- •26. Трехмерная печать. Технологии, оборудование, материалы для печати
- •33. Как создаются виртуальные коллекции археологических находок? Оборудование, технологии и программное обеспечение?
- •34. Что такое неразрушающий контроль и как он проводится при помощи современных технологий обработки изображений?
- •35. Что такое реверсивная технология и что такое Реверсивный инжиниринг?
4. Что такое линеаризация и эквализация?
Линеаризация — (от лат. linearis — линейный), один из методов приближённого представления замкнутых нелинейных систем, при котором исследование нелинейной системы заменяется анализом линейной системы, в некотором смысле эквивалентной исходной. Методы линеаризации имеют ограниченный характер, т. е. эквивалентность исходной нелинейной системы и её линейного приближения сохраняется лишь для ограниченных пространственных или временных масштабов системы, либо для определенных процессов, причем, если система переходит с одного режима работы на другой, то следует изменить и её линеаризированную модель. Применяя линеаризацию, можно выяснить многие качественные и особенно количественные свойства нелинейной системы.
Методы линеаризации
Метод логарифмирования-применяется к степенным функциям;
Метод обратного преобразования-для дробных функций;
Комплексный метод-для дробных и степенных функций.
Эквализация (англ. Equalization) - процесс обработки звукового сигнала эквалайзером. Термин обычно подразумевает коррекцию амплитуды или изменение отношения частот. При создании композиций эквализация применяется в 90% случаев, эквализация каждого инструмента это первый шаг при начале микширования.
Процесс эквализации можно условно разделить на две части: техническую эквализацию и художественную эквализацию.
5. Что понимается под фильтрацией изображений? Глобальная фильтрация
Обычно изображения, сформированные различными информационными системами, искажаются действием помех. Это затрудняет как их визуальный анализ человеком-оператором, так и автоматическую обработку в ЭВМ. При решении некоторых задач обработки изображений в роли помех могут выступать и те или иные компоненты самого изображения. Например, при анализе космического снимка земной поверхности может стоять задача определения границ между ее отдельными участками - лесом и полем, водой и сушей и т.п. С точки зрения этой задачи отдельные детали изображения внутри разделяемых областей являются помехой.
Ослабление действия помех достигается фильтрацией . При фильтрации яркость (сигнал) каждой точки исходного изображения, искаженного помехой, заменяется некоторым другим значением яркости, которое признается в наименьшей степени искаженным помехой. Что может послужить основой для таких решений ? Изображение часто представляет собой двумерную функцию пространственных координат, которая изменяется по этим координатам медленнее (иногда значительно медленнее), чем помеха, также являющаяся двумерной функцией. Это позволяет при оценке полезного сигнала в каждой точке кадра принять во внимание некоторое множество соседних точек, воспользовавшись определенной похожестью сигнала в этих точках. В других случаях, наоборот, признаком полезного сигнала являются резкие перепады яркости. Однако, как правило, частота этих перепадов относительно невелика, так что на значительных промежутках между ними сигнал либо постоянен, либо изменяется медленно. И в этом случае свойства сигнала проявляются при наблюдении его не только в локальной точке, но и при анализе ее окрестности. Заметим, что понятие окрестности является достаточно условным. Она может быть образована лишь ближайшими по кадру соседями, но могут быть окрестности, содержащие достаточно много и достаточно сильно удаленных точек кадра. В этом последнем случае, конечно, степень влияния далеких и близких точек на решения, принимаемые фильтром в данной точке кадра, будет совершенно различной.
Таким образом, идеология фильтрации основывается на рациональном использовании данных как из рабочей точки, так и из ее окрестности. В этом проявляется существенное отличие фильтрации от рассмотренных выше поэлементных процедур: фильтрация не может быть поэлементной процедурой обработки изображений.
Выражение (2), где интегрирование ведется по всей области определения x и y, характеризует преобразование всего изображения целиком - глобальную фильтрацию. Ядро преобразования h1 (x,y,x',y')в оптике именуют функцией рассеяния точки (ФРТ). Это изображение точечного источника на выходе оптической системы, которое уже является не точкой, а некоторым пятном. В соответствии с (2), все точки изображения f (x',y') превращаются в пятна, происходит суммирование (интегрирование) всех пятен. Не следует думать, что эта процедура обязательно приводит к расфокусировке изображения, наоборот, можно подобрать такую ФРТ, которая позволит сфокусировать расфокусированное изображение.
