
- •1) Основные понятия и величины, характеризующие электрические цепи
- •2) Классификация электрических цепей и их элементов. Виды схем, используемых в электротехнике
- •3) Основные законы электротехники
- •4) Типы задач, решаемых при расчёте электрооборудования. Дуальность элементов
- •5) Метод эквивалентных преобразований
- •6) Метод пропорциональных (определяющих) величин
- •7) Метод составления полной системы уравнений Кирхгофа
- •8) Метод контурных токов
- •10) Метод узловых напряжений (потенциалов)
- •11) Представление схем в виде графов. Топологические понятия
- •12,13) Виды матриц, используемых для описания схем в виде графа. Порядок составления топологических матриц
- •14) Матричная запись метода контурных токов
- •15) Матричная запись метода узловых напряжений
- •16) Теорема наложения и метод расчёта, основанный на ней
- •17) Теорема об эквивалентном генераторе и метод расчёта, основанный на ней
- •18) Теорема взаимности и метод расчёта, основанный на ней
- •19) Гармонические колебания , их описание и характеристики
- •20) Векторная форма представления синусоидальных величин
- •21) Представление синусоидальных величин в комплексной плоскости
- •22) Последовательная r-l-c цепь. Основные соотношения, полное комплексное сопротивление
- •23) Мощность цепи синусоидального тока
- •1. Резистор (идеальное активное сопротивление).
- •2. Катушка индуктивности (идеальная индуктивность)
- •3. Конденсатор (идеальная емкость)
- •24) Резонансные характеристики r-l-c цепи при последовательном соединении элементов
- •2. В цепи преобладает емкость, т.Е. , а значит, . Этот случай отражает векторная диаграмма на рис. 2,б.
- •25) Параллельная r-l-c цепь. Основные соотношения. Полная комплексная проводимость
- •27) Резонансные характеристики параллельной r-l-c цепи
- •28) Особенности анализа цепей со взаимоиндуктивными связями
- •Воздушный (линейный) трансформатор
- •29) Анализ цепей при несинусоидальном периодическом токе. Три формы разложения периодических сигналов в ряд Фурье
- •30) Интегральные характеристики несинусоидальных колебаний. Равенство Парсеваля
- •31) Частотные характеристики линейных электрических цепей и их использование в электрических цепях
- •32) Анализ электрических цепей как четырёхполюсников. Шесть комплектов первичных параметров
- •33) Схемы соединения и порядок свёртки четырехполюсников
- •34) Принципы согласования нагрузки. Характеристические (вторичные) параметры четырёхполюсников и их связь с первичными параметрами
- •35) Экспериментальное определение первичных и вторичных параметров четырёхполюсников
- •37) Транзистор как четырёхполюсник
- •40) Виды нелинейных элементов цепей и способы их описания
- •41) Графический метод анализа нелинейных цепей на постоянном токе
- •42) Графический метод анализа нелинейных цепей на переменном токе
- •Графический метод с использованием характеристик для мгновенных значений
- •Решение
- •43) Аналитический метод анализа нелинейных цепей
- •44) Понятие о режимах малого и большого сигнала
- •45) Магнитные цепи
- •Характеристики ферромагнитных материалов
- •Основные законы магнитных цепей
- •46) Методы анализа магнитных цепей
- •Регулярные методы расчета
- •1. Прямая” задача для неразветвленной магнитной цепи
- •2. “Прямая” задача для разветвленной магнитной цепи
- •Графические методы расчета
- •1. “Обратная” задача для неразветвленной магнитной цепи
- •2. “Обратная” задача для разветвленной магнитной цепи
- •Итерационные методы расчета
- •47) Электромагнитные устройства постоянного тока
- •48) Магнитные цепи переменного тока и методы их анализа
- •49) Методы машинного расчёта нелинейных цепей (итерационные методы)
- •50) Трансформаторы. Схема замещения и её использование для построения векторной диаграммы
- •51) Характеристики трансформатора при его нагрузке
- •52) Устройство машины постоянного тока. Способы и схемы возбуждения
- •54) Асинхронные трёхфазные двигатели. Устройство и принцип действия
- •58) Синхронные электрические машины. Устройство и принцип действия
- •55) Пуск асинхронного двигателя. Рабочие характеристики
- •56) Регулирование частоты вращения асинхронного двигателя
- •57) Асинхронные двигатели при однофазном питании
- •59) Синхронные генераторы. Нагрузочная и регулировочная характеристики
- •60) Синхронные двигатели автоматических устройств. Шаговые двигатели
- •Система пуска синхронного двигателя
- •Шаговый двигатель
18) Теорема взаимности и метод расчёта, основанный на ней
Принцип
взаимности основан на теореме
взаимности, которую
сформулируем без доказательства: для
линейной цепи ток
в
k – й ветви, вызванной единственной в
схеме ЭДС
,
находящейся в i – й ветви,
будет
равен току
в
i – й ветви, вызванному ЭДС
,
численно равной ЭДС
,
находящейся в k – й ветви,
.
Отсюда в частности вытекает указанное выше соотношение .
Иными словами, основанный на теореме взаимности принцип взаимности гласит: если ЭДС , действуя в некоторой ветви схемы, не содержащей других источников, вызывает в другой ветви ток (см. рис. 3,а), то принесенная в эту ветвь ЭДС вызовет в первой ветви такой же ток (см. рис. 3,б).
В качестве примера использования данного принципа рассмотрим цепь на рис. 4,а, в которой требуется определить ток , вызываемый источником ЭДС .
Перенесение источника ЭДС в диагональ моста, где требуется найти ток, трансформирует исходную схему в цепь с последовательно-параллельным соединением на рис. 4,б. В этой цепи
|
(7) |
где
.
В соответствии с принципом взаимности ток в цепи на рис. 4,а равен току, определяемому соотношением (7).
19) Гармонические колебания , их описание и характеристики
Э
лектромагнитный
процесс в электрической цепи, при котором
мгновенные значения напряжений и токов
повторяются через равные промежутки
времени, называется периодическим.
Наименьший промежуток времени, по
истечении которого наблюдаются повторения
мгновенных значений периодических
величин, называется периодом.
Если величину, являющуюся периодической
функцией времени t
обозначить через F
(t), то для любого
положительного или отрицательного
значения аргумента t
справедливо равенство F(t±T)
= F(t),
где Т — период.
Геометрически это значит, что ординаты двух произвольных точек графика F(t) с абсциссами, отличающимися на Т одинаковы.
Величина, обратная периоду, т. е. число периодов в единицу времени, называется частотой: f=1/T
Частота имеет размерность l/сек, а единицей измерения частоты служит герц (гц); частота равна 1 гц, если период равен 1 сек.
Преобладающим видом периодического процесса в электрических цепях является синусоидальный режим, характеризующийся тем, что все напряжения и токи являются синусоидальными функциями одинаковой частоты. Это возможно только при заданных синусоидальных э.д.с. и токах источников. Тем самым обеспечивается наиболее выгодный эксплуатационный режим работы электрических установок.
Как известно из курса математического анализа, синусоида является простейшей периодической функцией; всякие другие несинусоидальные периодические функции могут быть разложены в бесконечный ряд синусоид, имеющих кратные. Поэтому для исследования процессов в цепях переменного тока в первую очередь необходимо изучить особенности цепей синусоидального тока. Так как косинусоида может рассматриваться как сдвинутая синусоида, то условимся к синусоидальным функциям причислять и косинусоидальные. Колебания, выражаемые этими функциями, будем называть гармоническими.
На рис. 2-1 изображены функции
,
здесь
—
максимальное значение или амплитуда,
—
скорость изменения аргумента (угла),
называемая угловой частотой; она
равна произведению частоты на 2π:
ω=2πf(3),
рад/сек; φ—начальная фаза, определяемая
величиной смещения гармонической
функции относительно начала координат;
при записи (1) она измеряется
абсциссой положительного максимума,
а при (2) — абсциссой точки перехода
отрицательной полуволны в положительную.
Начальная фаза φ представляет алгебраическую величину. На рис. 2-1, а и г угол φ отрицателен. На рис. 2-1, б и в угол φ положителен.
За аргумент функций (1) и (2) может быть принято время t или соответственно угол ωt. Аргументу t соответствует период Т, а аргументу ωt — период ωt=2π. Следует иметь в виду, что аргумент ωt измеряется в радианах, причём в тех же единицах измеряется и начальная фаза.
Если угол φ вычисляется в градусах, то аргумент ωt также переводится в градусы(1рад=57,3 градуса); в этом случае период составляет 360°.
Величина ωt+ φ, определяющая стадию изменения функций (1) и (2), называется фазовым углом или фазой. С течением времени фаза возрастает, причем после увеличения фазы на 2π цикл изменения синусоидальной величины повторяется.
Рассмотренные понятия, характеризуют гармонические колебания, являются исходными при изучении электрических процессов в цепях переменного тока.