Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы по методам! на все 15 билетов!.doc
Скачиваний:
9
Добавлен:
25.09.2019
Размер:
1.68 Mб
Скачать

15 Ответ.

Экстремум функции одной переменной

Поиск экстремума функции включает в себя задачи нахождения локального и глобального экстремума. Последние называют еще задачами оптимизации. Рассмотрим конкретный пример функции f(x), показанной графиком на рис. 8.8 на интервале (-2,5). Она имеет глобальный максимум на левой границе интервала, глобальный минимум, локальный максимум, локальный минимум и локальный максимум на правой границе интервала (в порядке слева направо).

В Mathcad с помощью встроенных функций решается только задача поиска локального экстремума. Чтобы найти глобальный максимум (или минимум), требуется либо сначала вычислить все их локальные значения и потом выбрать из них наибольший (наименьший), либо предварительно просканиро-вать с некоторым шагом рассматриваемую область, чтобы выделить из нее подобласть наибольших (наименьших) значений функции и осуществить поиск глобального экстремума, уже находясь в его окрестности. Последний путь таит в себе некоторую опасность уйти в зону другого локального экстремума, но часто может быть предпочтительнее из соображений экономии времени.

Рис. 8.8. График функции f(х)=х4+5х3-10х

Для поиска локальных экстремумов имеются две встроенные функции, которые могут применяться как в пределах вычислительного блока, так и автономно.

Minimize (f, x1, ... ,хм) — вектор значений аргументов, при которых функция f достигает минимума;

Maximize (f, х1, ... ,хм) — вектор значений аргументов, при которых функция f достигает максимума;

f (x1, ... , хм,...) — функция;

x1, ... , xм — аргументы, по которым производится минимизация (максимизация).

Всем аргументам функции f предварительно следует присвоить некоторые значения, причем для тех переменных, по которым производится минимизация, они будут восприниматься как начальные приближения. Примеры вычисления экстремума функции одной переменной (рис. 8.8) без дополнительных условий показаны в листингах 8.11- 8.12. Поскольку никаких дополнительных условий в них не вводится, поиск экстремумов выполняется для любых значений.

Листинг 8.11. Минимум функции одной переменной

Листинг 8.12. Максимум функции одной переменной

Как видно из листингов, существенное влияние на результат оказывает выбор начального приближения, в зависимости от чего в качестве ответа выдаются различные локальные экстремумы. В последнем случае численный метод вообще не справляется с задачей, поскольку начальное приближение х=-10 выбрано далеко от области локального максимума, и поиск решения уходит в сторону увеличения f (х).

Возрастание и убывание функции на интервале, экстремумы.

Очень важную информацию о поведении функции предоставляют промежутки возрастания и убывания. Их нахождение является частью процесса исследования функции и построения графика. К тому же точкам экстремума, в которых происходит смена с возрастания на убывание или с убывания на возрастание, уделяется особое внимание при нахождении наибольшего и наименьшего значения функции на некотором интервале. В этой статье дадим необходимые определения, сформулируем достаточный признак возрастания и убывания функции на интервале и достаточные условия существования экстремума, применим всю эту теорию к решению примеров и задач. Рекомендуем при необходимости обращаться к разделу дифференцирование функции, так как все признаки в этой статье основаны на нахождении производной. 

Необходимые определения.

Определение возрастающей функции. Функция y = f(x) возрастает на интервале X, если для любых   и   выполняется неравенство  . Другими словами – большему значению аргумента соответствует большее значение функции. Определение убывающей функции. Функция y = f(x) убывает на интервале X, если для любых   и   выполняется неравенство  . Другими словами – большему значению аргумента соответствует меньшее значение функции.

ЗАМЕЧАНИЕ: если функция определена и непрерывна в концах интервала возрастания или убывания (a; b), то есть при x = a и x = b, то эти точки включаются в промежуток возрастания или убывания. Это не противоречит определениям возрастающей и убывающей функции на промежутке X. К примеру, из свойств основных элементарных функций мы знаем, что y = sinx определена и непрерывна для всех действительных значений аргумента. Поэтому, из возрастания функции синуса на интервале  мы можем утверждать о возрастании на отрезке  . Точку   называют точкой максимума функции y = f(x), если для всех x из ее окрестности справедливо неравенство  . Значение функции в точке максимума называют максимумом функции и обозначают  . Точку   называют точкой минимума функции y = f(x), если для всех x из ее окрестности справедливо неравенство  . Значение функции в точке минимума называют минимумом функции и обозначают  . Под окрестностью точки   понимают интервал  , где   - достаточно малое положительное число.  Точки минимума и максимума называют точками экстремума, а значения функции, соответствующие точкам экстремума, называют экстремумами функции.

Не путайте экстремумы функции с наибольшим и наименьшим значением функции. На первом рисунке наибольшее значение функции на отрезке [a; b] достигается в точке максимума и равно максимуму функции, а на втором рисунке – наибольшее значение функции достигается в точке x = b, которая не является точкой максимума.

К началу страницы 

Достаточные признаки возрастания и убывания функции.

На основании достаточных признаков находятся промежутки возрастания и убывания функции. Вот формулировки признаков:

если производная функции y = f(x) положительна для любого x из интервала X, то функция возрастает на X;

если производная функции y = f(x) отрицательна для любого x из интервала X, то функция убывает на X.

Таким образом, чтобы определить промежутки возрастания и убывания функции необходимо:

найти область определения функции;

найти производную функции;

решить неравенства   и   на области определения;

к полученным промежуткам добавить граничные точки, в которых функция определена и непрерывна.

Рассмотрим пример для разъяснения алгоритма.

Пример. Найти промежутки возрастания и убывания функции  . Решение. Первым шагом является нахождение обрасти определения функции. В нашем примере выражение в знаменателе не должно обращаться в ноль, следовательно,  . Переходим к производной функции:   Для определения промежутков возрастания и убывания функции по достаточному признаку решаем неравенства   и   на области определения. Воспользуемся обобщением метода интервалов. Единственным действительным корнем числителя является x = 2, а знаменатель обращается в ноль при x = 0. Эти точки разбивают область определения на интервалы, в которых производная функции сохраняет знак. Отметим эти точки на числовой прямой. Плюсами и минусами условно обозначим интервалы, на которых производная положительна или отрицательна. Стрелочки снизу схематично показывают возрастание или убывание функции на соответствующем интервале.   Таким образом,   и  . В точке x = 2 функция определена и непрерывна, поэтому ее следует добавить и к промежутку возрастания и к промежутку убывания. В точке x = 0 функция не определена, поэтому эту точку не включаем в искомые интервалы. Приводим график функции для сопоставления с ним полученных результатов.   Ответ: функция возрастает при  , убывает на интервале (0; 2].  К началу страницы 

Достаточные признаки экстремума функции.

Для нахождения максимумов и минимумов функции можно пользоваться любым из трех достаточных признаков экстремума. Хотя самым распространенным и удобным является первый из них. Первое достаточное условие экстремума. Пусть функция y = f(x) дифференцируема в  -окрестности точки  , а в самой точке   непрерывна. Тогда

если   при   и   при  , то   - точка максимума;

если   при   и   при  , то   - точка минимума.

Другими словами:

если в точке   функция непрерывна и в ней производная меняет знак с плюса на минус, то   - точка максимума; если в точке   функция непрерывна и в ней производная меняет знак с минуса на плюс, то   - точка минимума. Алгоритм.

Находим область определения функции.

Находим производную функции на области определения.

Определяем нули числителя, нули знаменателя производной и точки области определения, в которых производная не существует (эти точки называют точками возможного экстремума, проходя через эти точки, производная как раз может изменять свой знак).

Эти точки разбивают область определения функции на промежутки, в которых производная сохраняет знак. Определяем знаки производной на каждом из интервалов (например, вычисляя значение производной функции в любой точке отдельно взятого интервала).

Выбираем точки, в которых функция непрерывна и, проходя через которые, производная меняет знак.