Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГОСЫ ПУ.doc
Скачиваний:
7
Добавлен:
24.09.2019
Размер:
2.53 Mб
Скачать

30)Основные элементы конструкции накопителя на жестком магнитном диске(нжмд)

Ответ

НЖМД состоит из четырех главных элементов: носителя (пакета дисковых пластин, приводимого во вращение шпинделем двигателя), головок чтения-записи, расположенных на концах несущих рычагов, позиционера (устройства, наводящего головки на нужную дорожку) и контроллера, обеспечивающего согласованное управление всеми элементами диска и передачу данных между ним и компьютером.

Устройство накопителя на жестком магнитном диске В современных ПК чаще всего устанавливаются НЖМД формата 3,5 дюйма, а в ноутбуках -2,5 дюйма и меньше. В большинстве НЖМД устанавливается минимум два диска, а в некоторых малых м.б. по одному. Количество дисков ограничивается физическими размерами - высотой корпуса. Пластины дисков м.б изготовлены из алюминиевого сплава или композитных материалов на основе стекла и керамики (например MemCor). Такие диски отличаются большей прочностью и жесткостью, поэтому их можно сделать в два раза тоньше алюминиевых. Кроме того, они менее восприимчивы к перепадам температур, т.е. их размеры при нагреве и охлаждении изменяются весьма незначительно.

Рабочий слой диска Пластина диска покрывается тонким слоем вещества, способного сохранять остаточную намагниченность после воздействия внешнего магнитного поля. Этот слой называется рабочим или магнитным, и именно в нем сохраняется записанная информация. Самыми распространенными являются два типа рабочего слоя - оксидный и тонкопленочный.

Оксидный слой представляет собой полимерное покрытие с наполнителем из окиси железа. Наносят его следующим образом. Сначала на поверхность быстро вращающегося алюминиевого диска разбрызгивается суспензия порошка оксида железа в растворе полимера. За счет действия центробежных сил она равномерно растекается по поверхности диска от его центра к внешнему краю. После полимеризации раствора поверхность шлифуется. Затем на нее наносится еще один слой чистого полимера, обладающего достаточной прочностью и низким коэффициентом трения, и диск окончательно полируется. Чем выше емкость накопителя, тем более тонким и гладким должен быть рабочий слой дисков. .

Тонкопленочный рабочий слой имеет меньшую толщину, он прочнее, и качество его покрытия гораздо выше. Эта технология легла в основу производства накопителей нового поколения, в которых удалось существенно уменьшить величину зазора между головками и поверхностями дисков, что позволило повысить плотность записи. Сначала тонкопленочные диски использовались только в высококачественных накопителях большой емкости, но сейчас они применяются практически во всех накопителях. Тонкопленочный рабочий слой называют также гальванизированным или напыленным, поскольку наносить тонкую пленку на поверхность дисков можно по-разному.

Конструкция каркаса с головками чтения/записи В накопителях на жестких дисках для каждой из сторон каждого диска предусмотрена собственная головка чтения/записи. Все головки смонтированы на общем подвижном каркасе и перемещаются одновременно. Каждая головка установлена на конце рычага, закрепленного на пружине и слегка прижимающего ее к диску. Т.о. диск как бы зажат между парой головок (сверху и снизу). Когда накопитель выключен, головки касаются дисков под действием пружин. При раскручивании дисков аэродинамическое давление под головками повышается и они отрываются от рабочих поверхностей (“взлетают”). Когда диск вращается на полной скорости, зазор между ним и головками может составлять 0,5–5 микродюймов (0,01–0,5 мкм) и даже больше. Именно из этих соображений сборка блоков HDA выполняется только в чистых помещениях, соответствующих требованиям класса 100 (или даже более высоким). Это означает, что в одном кубическом футе воздуха может присутствовать не более 100 пылинок размером до 0,5 мкм. (Для сравнения: стоящий неподвижно человек каждую минуту выдыхает порядка 500 таких частиц). Поэтому помещения оснащаются специальными системами фильтрации и очистки воздуха. Блоки HDA можно вскрывать только в таких условиях. Поддержка столь стерильных условий стоит немалых денег.

головоки чтения/записи Первые головки представляли собой сердечники с обмоткой (электромагниты). По современным меркам их размеры были огромными, а плотность записи — чрезвычайно низкой.

Головка состоит из двух отдельных элементов - тонкопленочного индуктивного элемента записи и GMR-датчика считывания. Головка «летит» над поверхностью вращающейся пластины на расстоянии порядка 10—15 нм. Расстояние головки до магнитного слоя при этом заметно больше — до 30 нм. Защитный слой из алмазоподобного графита наносимый на головку и пластины, обладает чрезвычайно высокой прочностью и гладкостью, так что «падение» головки на поверхность пластины в случае, например, непредвиденной остановки двигателя не приводит в современных накопителях к выходу их из строя.

Двигатель привода дисков Двигатель, приводящий во вращение диски называют шпиндельным (spindle). Шпиндельный двигатель всегда связан с осью вращения дисков (без приводных ремней или шестерен). Двигатель должен быть бесшумным: любые вибрации передаются дискам и могут привести к ошибкам при считывании и записи. Частота вращения двигателя должна быть строго определенной. Обычно она колеблется от 7 200 до 10000-15000 об/мин, а для ее стабилизации используется схема управления двигателем с обратной связью (автоподстройкой), позволяющая добиться желаемой точности.

механизм привода головок - «средство доставки» головок к нужному цилиндру диска. От его скорости и точности работы зависит как время доступа к данным, так и допустимое расстояние между дорожками, т.е. в конечном счете плотность записи. В первых НЖМД приводом позиционера служил шаго­вый двигатель, но рост требований к скорости и точности позиционирования привел к тому, что повсеме­стно стал применяться привод на основе соленоида или «звуковой катушки» (аналогичный по принцип, действия тому, который используется в акустически динамиках для раскачки диффузора), дополненного сервосистемой с обратной связью для точного и быстрого вывода головок в нужную позицию.

плата управления - или блок электроники обычно содержит: управляющий блок, постоянное запоминающее устройство (ПЗУ), буферную память, интерфейсный блок и блок цифровой обработки сигнала. Интерфейсный блок обеспечивает сопряжение электроники жёсткого диска с остальной системой. Блок управления представляет собой систему управления, принимающую электрические сигналы позиционирования головок, и вырабатывающую управляющие воздействия приводом головок, коммутации информационных потоков с различных головок, управления работой всех остальных узлов (к примеру, управление скоростью вращения шпинделя). Блок ПЗУ хранит управляющие программы для блоков управления и цифровой обработки сигнала, а также служебную информацию винчестера. Буферная память сглаживает разницу скоростей интерфейсной части и накопителя (используется быстродействующая статическая память). Увеличение размера буферной памяти в некоторых случаях позволяет увеличить скорость работы накопителя. Блок цифровой обработки сигнала осуществляет очистку считанного аналогового сигнала и его декодирование (извлечение цифровой информации). Для цифровой обработки применяются различные методы, например метод PRML (Partial Response Maximum Likelihood — максимальное правдоподобие при неполном отклике). Осуществляется сравнении принятого сигнала с образцами. При этом выбирается образец наиболее похожий по форме и временным характеристикам с декодируемым сигналом.

физическая структура магнитного диска – для организации хранения данных на пластинах HЖМД в результатате низкоуровневого форматирования организуются концентрические дорожеки, каждая из которых делится на секторы с данными. Количество секторов на дорожке варьируется в зависимости от длины дорожки, т.е. на внешних дорожках секторов больше, а на внутренних меньше. Дорожки одинакового радиуса образую цилиндры. На каждой стороне каждой пластины размечены тонкие концентрические коль­ца — дорожки (traks), на которых хранятся данные. Количество дорожек зависит от типа диска. Нумерация дорожек начинается с 0 от внешнего края к центру диска. Когда диск вращается, элемент, называемый головкой, считывает двоич­ные данные с магнитной дорожки или записывает их на магнитную дорожку. Головка может позиционироваться над заданной дорожкой. Головки перемеща­ются над поверхностью диска дискретными шагами, каждый шаг соответствует сдвигу на одну дорожку. Запись на диск осуществляется благодаря способности головки изменять магнитные свойства дорожки. В некоторых дисках вдоль каж­дой поверхности перемещается одна головка, а в других — имеется по головке на каждую дорожку. В первом случае для поиска информации головка должна перемещаться по радиусу диска.. Поэтому, когда головка фикси­руется на заданной дорожке одной поверхности, все остальные головки останав­ливаются над дорожками с такими же номерами. Совокупность дорожек одного радиуса на всех поверхностях всех пластин паке­та называется цилиндром (cylinder). Каждая дорожка разбивается на фрагменты, называемые секторами (sectors), или блоками (blocks), так что все дорожки име­ют равное число секторов, в которые можно максимально записать одно и то же число байт. Иногда внешняя дорожка имеет несколько дополнительных секторов, используемых для замены поврежденных секторов в режиме горячего резервирования. Сектор имеет фиксированный для конкретной системы размер, вы­ражающийся степенью двойки. Чаще всего размер сектора составляет 512 байт. Учитывая, что дорожки разного радиуса имеют одинаковое число секторов, плот­ность записи становится тем выше, чем ближе дорожка к центру.

Сектор — наименьшая адресуемая единица обмена данными дискового устройст­ва с оперативной памятью. Для того чтобы контроллер мог найти на диске нуж­ный сектор, необходимо задать ему все составляющие адреса сектора: номер ци­линдра, номер поверхности и номер сектора. Так как прикладной программе в общем случае нужен не сектор, а некоторое количество байт, не обязательно кратное размеру сектора, то типичный запрос включает чтение нескольких сек­торов, содержащих требуемую информацию, и одного или двух секторов, содер­жащих наряду с требуемыми избыточные служебные данные

ОС при работе с диском использует, как правило, собствен­ную единицу дискового пространства, называемую кластером (cluster). При соз­дании файла место на диске ему выделяется кластерами. Например, на дисках с размером секторов в 512 байт, 512-байтный кластер содержит один сектор, тогда как 4-килобайтный кластер содержит восемь секторов. Как правило, это наименьшее место на диске, которое может быть выделено для хранения файла. Если файл имеет размер 2560 байт, а размер кластера в файловой системе определен в 1024 байта, то файлу будет выделено на диске 3 кластера.