- •1 Основные понятия и определения теории управления
- •4 Законы регулирования
- •5 Динамическая и статическая математическая модель системы. Линеаризация.
- •Передаточная функция
- •8 Частотные характеристики.
- •9 Временные характеристики.
- •10 Типовые звенья 1-го порядка и их характеристики.
- •Нестационарные системы управления.
- •19 Принцип аргумента. Критерий устойчивости Михайлова.
- •20 Критерий устойчивости Найквиста.
- •21 Устойчивость астатических систем по Найквисту.
- •22 Анализ устойчивости по лчх. Запасы устойчивости по амплитуде и фазе.
- •25 Оценка качества регулирования при гармонических воздействиях.
- •26 Корневые методы оценки качества регулирования.
- •29 Модуляция. Виды модуляции.
- •Виды импульсной модуляции.
- •35 Устойчивость импульсных су.
- •36 Оценка качества импульсных су.
- •37 Цифровые су.
- •38 Графы систем управления. Формула Мейсона.
- •39 Преобразование уравнений состояния в обыкновенные дифференциальные уравнения системы.
29 Модуляция. Виды модуляции.
процессе преобразования непрерывного сигнала в дискретный импульсный элемент выполняется 2 операции: квантование по времени и импульсную модуляцию. Первая из них состоит в том, что сигнал U(t) появляется в дискретные моменты времени t=ti(i= 0,1,2,…). Чаще всего эти моменты равностоящие, т.е ti =iT где Т – период дискретности. В результате импульсной модуляции изменяется какой-либо параметр импульса (амплитуда, ширина). Форма импульса может быть любой (прямоугольной, трапециевидной), но обычно используют импульсы прямоугольной формы.
Виды импульсной модуляции.
амплитудно-импульсное (АИМ);
широтно-импульсное (ШИМ);
частотно- импульсное (ЧИМ);
1). АИМ — это значит, что амплитуда имп. сигнала зависит от амплитуды непрерывного сигнала в момент квантования.Т-период квантования; t - продолжительность времени.
2). ШИМ => амплитуда импульса явл-ся величиной постоянной. Импульс, как и в варианте АИМ, также повторяется через постоянный промежуток времени. А время действия импульса явл-ся величиной переменной и зависит от амплитуды непрерывного сигнала в момент квантования.
3). ЧИМ. При ЧИМ амплитуда импульса и ширина импульса есть величины постоянные. А частота (период повторяется) импульса зависит от величины амплитуды непрерывного сигнала в момент квантования.
30 Функциональная и алгоритмическая структуры импульсной СУ.
31 Теорема Котельникова.
Непрерывные сигналы описываются непрерывными функциями времени. Мгновенные значения таких сигналов изменяются во времени плавно, без резких скачков (разрывов). Пример временной диаграммы непрерывного сигнала приведен на рис.5.2а. Сигналы, временные диаграммы которых изображены на рис.5.1, не являются непрерывными, поскольку их мгновенные значения в некоторые моменты времени изменяются скачками. Многие реальные сигналы являются непрерывными. К таковым можно отнести, например, электрические сигналы при передаче речи, музыки, многих изображений.
Рис. 5.1. График реализации телеграфного сигнала.
а)
б)
в)
г)
Рис. 5.2. Дискретизация, квантование непрерывного сигнала: а – непрерывный сигнал; б – дискретный по времени (импульсный) сигнал; в – дискретный по времени и по значениям (цифровой) сигнал; г – ошибка квантования
Сигналы с дискретным временем.
Их можно получить из непрерывных, выполняя над последними специальное преобразование, называемое дискретизацией по времени. Смысл этих преобразований проиллюстрируем с помощью временных диаграмм, приведенных на рис.5.2. Будем считать, что можно измерить мгновенные значения сигнала u(t) в моменты времени Δt, 2Δt, 3Δt…; Δt называют интервалом дискретизации по времени. Измеряемые значения u(Δt), u(2Δt), u(3Δt) отмечены на рис.5.2а точками. По этим значениям можно сформировать последовательность коротких прямоугольных импульсов, длительность которых одинакова и меньше интервала дискретизации Δt, а амплитуды равны измеренным значениям сигнала u(t). Последовательность таких прямоугольных импульсов изображена на рис.5.2б и часто называется импульсным сигналом или сигналом с дискретным временем. Такой сигнал будет обозначен символом uΔ(t). Отметим, что шаг дискретизации по времени здесь постоянен и равен Dt, а амплитуда каждого импульса равна мгновенному значению сигнала u(t) в соответствующий момент времени. Поскольку непрерывный сигнал u(t) в выделенные моменты времени может принимать любые значения, то и амплитуды импульсов импульсного сигнала, полученного из непрерывного путем дискретизации по времени, также могут принимать любые значения: На рис.5.2б значения амплитуд импульсов указаны с точностью лишь до одного десятичного знака после запятой. Для точного указания значения амплитуд импульсов может потребоваться неограниченное число десятичных знаков после запятой, т.е., значения амплитуд импульсов заполняют непрерывно некоторый интервал. Поэтому амплитуды импульсов сигнала uΔ(t) иногда называют непрерывными величинами.
Цифровые сигналы.
Как будет показано в дальнейшем, при передаче импульсных сигналов в электросвязи часто применяют специальное преобразование, состоящее в следующем. Предположим, что при передаче каждый импульс может иметь амплитуду лишь с разрешенным значением. Число разрешенных значений амплитуд импульсов конечно и задано. Например, на рис.5.2в разрешенные значения амплитуд пронумерованы цифрами 1, 2, 3, …; величина Δu равна разности между любыми двумя соседними разрешенными значениями амплитуд. Если истинное значение амплитуды импульса сигнала uΔ(t), подлежащее передаче, попадает между разрешенными значениями, то амплитуду передаваемого импульса принимают равной разрешенному значению, являющемуся ближайшим к истинному. Такое преобразование называют квантованием, совокупность разрешенных значений амплитуд передаваемых импульсов называют шкалой квантования, а интервал Δu между соседними разрешенными значениями – шагом квантования. Например, на рис. 2в разрешенные значения амплитуд импульсов приняты равными целым числам 0; 1; 2; 3 и образуют равномерную шкалу квантования, которая может быть продолжена и на область отрицательных значений сигнала u(t); при этом шаг квантования Δu=1.
Последовательность импульсов, полученная в результате квантования импульсов сигнала uΔ(t), также является импульсным сигналом, для которого введем обозначения uц(t). Особенность этого сигнала состоит в том, что амплитуды импульсов теперь имеют только разрешенные значения и могут быть представлены десятичными цифрами с конечным числом разрядов. Такие сигналы называют дискретными или цифровыми. Квантование приводит к ошибке квантования e(t) = uц(t) – uΔ(t). На рис.5.2г приведен пример временной диаграммы ошибки е(t). Передача цифрового сигнала uц(t) вместо сигнала uΔ(t) фактически эквивалентна передаче импульсного сигнала uΔ(t) с предварительно наложенным на него сигналом ошибки е(t), который в этом случае может рассматриваться как помеха. Поэтому е(t) часто называют помехой квантования или шумом квантования.
Теорема Котельникова.
Поскольку дискретные сигналы широко используют в настоящее время при передаче сообщений, а многие реальные сигналы являются непрерывными, то важно знать: можно ли непрерывные сигналы представлять с помощью дискретных; можно ли указать условия, при которых такое представление оказывается точным. Эта теорема формулируется следующим образом: если непрерывный сигнал u(t) имеет ограниченный спектр и наивысшая частота в спектре меньше, чем fв герц, то сигнал u(t) полностью определяется последовательностью своих мгновенных значений в дискретные моменты времени, отстоящие друг от друга не более чем на 1/(2fв) секунд.
Смысл теоремы Котельникова поясним с помощью временных диаграмм, приведенных на рис.5.2а. Пусть это будет часть временной диаграммы сигнала u(t) с ограниченным спектром и с верхней граничной частотой fв. Если интервал дискретизации Δt<2 fв, то в теореме утверждается, что по значениям u(Δt), u(2Δt), u(3Δt),… можно определить точное значение сигнала u(t) для любого заданного момента времени t, находящегося между моментами отсчета. В соответствии с этой теоремой сигнал с ограниченным спектром и верхней частотой wв<=wΔ/2 можно представить рядом
где u(nΔt), n=…-1, 0, +1,… - отсчеты мгновенных значений сигнала и(t), wΔ = 2¶fΔ , fΔ=ЅΔt – частота дискретизации по времени.
Ряд 2 имеет бесконечное число слагаемых, так что для вычисления значения сигнала u(t) в момент времени t необходимо знать значения всех отсчетов и(nΔt), n=…-1, 0, +1, … как до, так и после указанного момента t. Точное равенство в (2) достигается, только когда учитываются все слагаемые; если ограничиться конечным числом слагаемых в правой части (2), то их сумма даст лишь приближенное значение сигнала u(t).
Представление сигнала u(t) рядом (2) иллюстрируется с помощью рис.5.3, на котором изображены временные диаграммы сигнала u(t) и трех слагаемых ряда
Представление сигнала с ограниченным спектром рядом Котельникова.
Таким образом, теорема Котельникова указывает условия, при которых непрерывный сигнал может быть точно восстановлен по соответствующему ему сигналу с дискретным временем. Реальные непрерывные сигналы, подлежащие передаче, как правило, имеют спектры хотя и довольно быстро стремящиеся к нулю с ростом частоты, но все же неограниченные. Такие сигналы могут быть восстановлены по своим дискретным отсчетам лишь приближенно. Однако, выбирая шаг дискретизации Δt достаточно малый, можно обеспечить пренебрежимо малое значение ошибки восстановления непрерывного сигнала по его переданным отсчетам в дискретные моменты времени. Например, при передаче телефонного сигнала, спектр которого неограничен, обычно принимают, что условная верхняя граничная частота fв = 3,4 кГц. В этом случае получаем, что частота дискретизации должна удовлетворять неравенству fΔ і 6,8 кГц, т.е. в одну секунду должно передаваться 6,8 тысяч отсчетов. Качество передачи речи при этом оказывается вполне удовлетворительным. Увеличение частоты дискретизации сверх указанного значения допустимо и приводит к незначительному повышению точности восстановления телефонного сигнала. Если же принять fΔ<6,8 кГц, то точность восстановления телефонного сигнала заметно падает.
32 z-преобразование.
Определение z-преобразования. Z-преобразование представляет собой разложение функций в ряды степенных полиномов по z. Впервые z-преобразование введено в употребление П.Лапласом в 1779 и повторно "открыто" В.Гуревичем в 1947 году с изменением символики на z-k. В настоящее время в технической литературе имеют место оба вида символики. На практическое использование преобразования это не влияет, т.к. смена знака только зеркально изменяет нумерацию членов полинома (относительно z0), числовое пространство которых в общем случае от - до +. В дальнейшем в качестве основной будем использовать символику положительных степеней z, давая пояснения по особенностям отрицательной символики, если таковая имеется.
Произвольной непрерывной функции s(t), равномерно дискретизированной и отображенной отсчетами равно как и непосредственно дискретной функции, можно поставить в однозначное соответствие степенной полином по z, последовательными коэффициентами которого являются значения sk:
(8.1.1)
где - произвольная комплексная переменная. В показательной форме
В общем случае, z-преобразование – это степенной ряд с бесконечным количеством членов, поэтому он может сходиться не для всего пространства значений z. Область z, в которой z-преобразование сходится и значения S(z) конечны, называют областью сходимости.
Значения z, для которых S(z) = ∞, называются полюсами, а для которых S(z) = 0, называются нулями функции S(z). Как видно из примеров, для последовательностей конечной длины z-преобразование сходится везде кроме точки z=∞ для имеющих правостороннюю часть (k≥0), и точки z=0 для имеющих левостороннюю часть (k<0), в любых их комбинациях. Для бесконечных причинных последовательностей преобразование сходится везде внутри круга единичного радиуса с центром в начале координат.
Основное достоинство z-преобразований заключается в простоте математических операций со степенными полиномами, что имеет немаловажное значение при расчетах цифровых фильтров и в спектральном анализе.
33 Свойства z-преобразования.
1. Линейность. Спектр суммы сигналов равен сумме спектров этих сигналов. Если последовательности x1(n) и x2(n) имеют z-образы X1(n) и X2(n), то z-образ их линейной комбинации будет равен линейной комбинации z-образов сигналов.
.
Это свойство вытекает из того, что мы здесь рассматриваем ЛИВ-системы.
2. Задержки или смещения. Если z-образ последовательности x(n) равен X(z), то z-образ этой последовательности с задержкой на m выборок (периодов дискретизации) будет равен X(z)•z-m т.е.
,
.
3. Функция передачи дискретной системы.
Отношение спектра выходного сигнала к спектру входного сигнала является величиной постоянной относительно величины и формы сигнала.
Это отношение называется передаточной характеристикой и имеет ту же суть, что и частотная характеристика в спектральной теории. Надо учитывать, однако, что переменная z не равна частоте и является комплексной величиной.
Спектр выходного сигнала Y(z) дискретной ЛИВ-системы можно определить по спектру входного сигнала, если известна передаточная характеристика
.
Передаточную характеристику легко определить, если известна импульсная характеристика дискретной системы h(k). Для этого рассмотрим связь между входным и выходным сигналами ЛИВ-системы
.
Выполним z-преобразование над левой и правой частями этого уравнения. Здесь h(k) не зависит от n и может быть вынесена как константа. С другой стороны
Таким образом получаем
Отсюда видно что
Это означает что передаточная характеристика определяется как z-преобразование от импульсной характеристики дискретной ЛИВ-системы.
4. Дифференцирование. Если X(z) – z-образ последовательности x(n), то z-образ n•x(n) можно найти, продифференцировав X(z)
,
.
Это свойство полезно для вычисления обратного z-преобразования, когда X(z) содержит полюсы высокого порядка.
34 Характеристики типовой импульсной цепи.
Импульсной характеристикой h(t) цепи называют сигнал на выходе при подаче на вход сигнала вида -импульса:
Этот тип сигнала также используется как простой тестовый, т.к. с его помощью также можно описать любой сложный сигнал.
Рис. 2
Представим аналоговый сигнал s(t) в виде суммы импульсов через промежутки t, амплитуды которых равны значениям сигналов в моменты t=kt.
Сравнивая площади под исходным сигналом s(t) и его ступенчатым аналогом, устремляя t к нулю, получаем окончательную интегральную форму
,
Здесь величина s(t )dt (площадь элементарного прямоугольного импульса) имеет смысл постоянного коэффициента при дельта-функции (t- ).
Зная отклик цепи на -функцию можно определить реакцию цепи на любое сложное воздействие.
Поскольку первая производная функции s(t) и есть дельта-функция, т.е. , то и импульсная характеристика также будет производной от переходной, т.е. , и, наоборот,
импульсную характеристику цепи используют во временном методе анализа.