
- •Курс: охрана окружающей среды в теплотехнологии: выбросы теплотехнических установок
- •Модуль 1
- •Оглавление
- •Дидактический план
- •Литература Государственные стандарты Российской Федерации
- •Основная
- •Дополнительная
- •1. Выбросы теплотехнологических установок промышленных предприятий и их влияние на окружающую среду
- •1.1. Атмосфера – основа жизни
- •1.2. Последствия загрязнения атмосферы
- •1.3. Загрязнители атмосферы
- •1.4. Выбросы в атмосферу и их характеристика
- •1.5. Нормативы качества атмосферного воздуха
- •1.6. Перемещение загрязняющих веществ в атмосфере
- •1.7. Превращение загрязняющих веществ в атмосфере
- •1.8. Основы образования загрязнителей атмосферы
- •1.9. Источники техногенного загрязнения биосферы
- •1.10. Система государственных стандартов в области охраны биосферы
- •1.11. Нормирование загрязняющих веществ в биосфере
- •1.12. Экологический паспорт предприятия
- •2. Техника и технология удаления взвешенных веществ из атмосферных выбросов
- •2.1. Физические принципы, используемые для удаления твердых и жидких загрязнений
- •1 Источник высокого напряжения; 2 плоский электрод; 3 провод; 4 чехол короны; 5 электроны; 6 положительные ионы; 7 отрицательные ионы
- •1 Отрицательные ионы; 2 частицы, взвешенные в газе; 3 заряженная частица
- •2.2. Основные процессы извлечения газообразных примесей
- •2.3. Основные характеристики пылеуловителей
- •2.4. «Сухие» механические пылеуловители
- •2.5. «Сухие» пористые фильтры
- •1 Бункер; 2 корпус; 3 диффузор-сопло; 4 крышка; 5 труба раздающая; 6 секция клапанов; 7 коллектор сжатого воздуха; 8 секция рукавов
- •1 Корпус; 2 фильтрующие ячейки; 3 система импульсной регенерации; 4 фильтрующие элементы; 5 бункер
- •1 Корпус; 2 слой активированного угля; 3 центральная труба для подачи
- •2.6. Электрофильтры («сухие» и «мокрые»)
- •2.7. Аппараты «мокрого» пыле- и газоулавливания
- •1 Корпус; 2, 4 перегородки; 3 водоотбойник; 5 каплеуловитель; 6 вентиляционный агрегат; 7 устройство для регулирования уровня воды
- •2.8. Комбинированные методы и аппаратура очистки газов
- •6 Регулятор подачи воды; 7 разгрузочное устройство
- •2.9. Подготовка выбросов перед очисткой в пылеулавливающих устройствах
- •3. Техника и технология удаления газообразных вредных веществ из примесей
- •3.1 Абсорбционная очистка газов
- •3.2. Адсорбционная очистка газов
- •3.3. Каталитическая очистка газов
- •1 Цилиндрическая часть корпуса; 2 зернистый катализатор; 3 верхняя часть корпуса; 4 циклон; 5 шнековое устройство; 6 газораспределительная решетка
- •1 Цилиндрический корпус; 2 циклон; 3 сопло; 4 бункер, 5 эжекторное устройство
- •3.4. Термическое обезвреживание газов
- •1 Горелка; 2 топка, 3 взрывной клапан; 4 поворотный клапан; 5 сотовые перегородки; 6 дымовая труба; 7 газоход; 8 камера смешения; 9 окно; 10 перегородка
- •Задания для самостоятельной работы
- •1. Перечислить источники техногенного загрязнения биосферы:
- •2. Перечислить основные механизмы осаждения, имеющие наибольшее применение:
- •3. Перечислить основные требования к абсорбентам:
- •4. Перечислите основные требования к конструкциям каталитических реакторов:
- •5. Перечислите основные требования к оборудованию термического обезвреживания газов:
- •Глоссарий
- •Охрана окружающей среды в теплотехнологии: выбросы теплотехнических установок модуль 1
1.7. Превращение загрязняющих веществ в атмосфере
После выхода из источника загрязняющие вещества не остаются в атмосфере в неизменном виде. Происходят физические изменения, особенно в процессе динамических явлений, таких как перемещение и распространение в пространстве, турбулентная диффузия, разбавление и т. д. Кроме того, в результате химических процессов в атмосфере также происходят изменения. Часто это лишь простые быстрые химические реакции (например, окисление), температурные изменения, приводящие к конденсации некоторых газов и паров, сопровождающиеся образованием туманов, капель и т. п. После длительного пребывания некоторых газообразных загрязняющих веществ в атмосфере они превращаются в твердые, чрезвычайно тонкодисперсные частицы. Солнечное излучение вызывает в атмосфере химические реакции между различными загрязняющими веществами и окружающей их средой. На рис. 3 приведены упрощенные схемы основных химических изменений загрязняющих веществ в атмосфере.
Наиболее часто происходящий в атмосфере химический процесс окисление веществ кислородом воздуха. Так, в атмосфере происходит окисление диоксида серы в триоксид и оксида азота в диоксид. Аналогичным образом окисляются многие органические вещества, например, альдегиды до органических кислот, ненасыщенные углеводороды и множество других веществ. Скорость окисления неодинакова для различных веществ и зависит от ряда дополнительных факторов.
Например, вследствие очень быстрого окисления оксида азота кислородом воздуха рыжий «хвост» диоксида азота появляется непосредственно на выходе оксида азота из дымовой трубы предприятия по производству азотной кислоты. В сухом чистом воздухе диоксид серы сохраняется в течение 2 4 дней или более, прежде чем полностью превратится в триоксид. При высокой влажности и в присутствии твердых веществ, катализирующих окисление, полупериод реакции составляет 10 20 мин. За это время половина диоксида серы превращается в триоксид. Однако вследствие кинетики этой реакции полное окисление второй половины может занять от нескольких часов до нескольких суток.
Помимо влажности и наличия суспендированных твердых частиц ускорить реакции окисления могут такие факторы, как ультрафиолетовое излучение, а также наличие сильных оксидантов либо их вторичное формирование. К этим веществам относятся озон, пероксиды и атомарный кислород, которые образуются в ходе многих фотохимических реакций.
Под действием ультрафиолетового излучения, приходящего от Солнца, также возникают циклические реакции, так называемые циклы Чепмена, которые представляют собой процесс ответственный за разрушение озонового слоя. Солнечный свет с длиной волны в диапазоне 290 700 нм является фотохимически эффективным, а вещества, поглощающие такое излучение, могут действовать как основные фотохимические реагенты либо как фоточувствительные датчики, которые переносят поглощенную энергию к молекулам веществ, способных претерпевать указанные превращения.
В число первичных веществ, поглощающих ультрафиолетовое излучение, входят сера, диоксид азота и альдегиды. Это излучение возбуждает молекулы указанных веществ, которые затем реагируют с молекулярным кислородом атмосферы с образованием атомарного кислорода. Диоксид серы поглощает излучение при длинах волн от 290 до 400 нм, так что окисление диоксида серы в триоксид в атмосфере происходит под действием солнечного света значительно быстрее. Эта реакция описывается уравнением:
SO2
+ O2
SO3
+ O
Аналогичным образом реагируют и альдегиды:
НСНО + О2 НСООН + О
Атомарный кислород может также образоваться по реакциям:
H2S + O2 H2O + S + O
NO + O2 NO2 + O
CH4 + O2 CH3OH + O
C2H6 + O2 C2H4 + H2O + O
CO + O2 CO2 + O
Реакции с участием диоксида серы и альдегидов протекают необратимо. В то же время количество атомарного кислорода, образующегося при этом, относительно невелико, что соответствует содержанию диоксида серы и альдегидов в атмосфере. Однако при реакциях, в которых участвует диоксид азота, поглощение ультрафиолетового излучения приводит к разрыву одной связи между атомами азота и кислорода и образованию молекулярного кислорода и оксида азота. Последующие реакции приводят к образованию молекулярного кислорода и озона и регенерации диоксида азота. Эти процессы можно представить в виде
NO2 NO + O
NO2 + O2 NO + O2
O + O2 O3
Рис. 3. Примеры превращений в атмосфере
Регенерированный диоксид азота может вновь вступить в реакцию, и, таким образом, этот процесс может многократно повторяться до тех пор, пока диоксид азота не превратится в азотную кислоту, либо не прореагирует с органическими веществами с образованием нитросоединений. Следовательно, даже малые концентрации диоксида азота в атмосфере могут явиться причиной значительных количеств атомарного кислорода и озона. Именно поэтому диоксид азота занимает важное место в формировании окислительного смога.
Регенерация – восстановление, возобновление, возмещение чего – ни будь в процессе развития, деятельности, обработки.
Существуют два основных типа смогов: восстановительный типичный для Лондонского региона и фотохимический окислительный типичный для зоны Лос-Анджелеса.
Смог (англ. smog, от smoke дым и fog туман) аэрозоль, состоящий из дыма, тумана и пыли. Возникает в атмосфере промышленных городов из частиц сажи, пепла, продуктов сухой перегонки топлива; во влажной атмосфере содержит также капельки жидкости. В жаркую сухую погоду наблюдается в виде желтоватой пелены. Может быть причиной заболеваний органов дыхания, кровообращения.
Восстановительный смог это атмосферное явление, встречающееся в больших промышленных городах и представляющее собой смесь дыма, сажи и диоксида серы. Обычно он достигает максимальных уровней рано утром при температуре около 0 °С и высокой влажности и дополняется состоянием инверсии в атмосфере (отражательная или поверхностная инверсия). Раздражающе действуя на бронхи и дыхательные пути, смог оказывает прямое отрицательное воздействие на здоровье людей. В 1952 и 1962 годах этот смог составил значительную долю загрязнения атмосферы Лондона и привел к смерти нескольких тысяч человек. Это стимулировало принятие радикальных мер по борьбе с загрязнением воздуха в Лондоне и привело к существенному улучшению состояния атмосферы, причем настолько заметному, что в указанном регионе более не образовывался подобный смог.
Фотохимический окислительный смог достигает максимального уровня около полудня при температуре 24 32 °С и низкой влажности и дополняется нисходящей инверсией. Он вызывает раздражение глаз и снижение уровня зрения, нарушает процессы вегетации, окисляет резину и вызывает быстрое ее старение, а также имеет неприятный запах. Основным условием формирования такого смога является наличие в атмосфере оксидов азота. Фотохимическое разложение диоксида азота и другие указанные выше реакции инициируют серию последующих реакций, в которых участвуют как неорганические (преимущественно диоксид серы), так и органические (преимущественно углеводороды) вещества, присутствующие в атмосфере. Весьма обширный набор конечных продуктов включает озон, формальдегид, акролеин, органические озониды и органические кислоты. Снижение видимости связано с образованием аэрозолей, одной из составляющих которых является триоксид серы продукт окисления диоксида.
Весьма важным в процессе образования окислительного смога являются также реакции ненасыщенных углеводородов с озоном. Наибольший вклад в его формирование и в нарушение вегетации вносят ненасыщенные углеводороды с пяти- и шестиуглеродными цепочками (1пентен, 1гексен).
Вегетация (от лат. vegetatio возбуждение, оживление) произрастание, активная (в отличие от состояния покоя) жизнедеятельность растительных организмов.
Ненасыщенные углеводороды с семи- и девятиуглеродными цепочками также приводят к образованию озонидов и других продуктов, но наносимый ими ущерб процессам вегетации уже несколько меньше. Встречаются и весьма сложные реакции с образованием дополнительных соединений в качестве промежуточных продуктов, а также с появлением свободных радикалов по мере разложения этих продуктов. При фотохимических реакциях альдегидов и кетонов тоже могут образовываться свободные радикалы. Например, формил (НСО) образуется из формальдегидов, а метил и ацетил из ацетона:
(сн3
со
сн3
сн
+ сн3со)
Радикалы свободные атомы или химические соединения с неспаренным электроном.
За этими реакциями могут последовать и другие, с получением разнообразных продуктов. В воздухе свободные радикалы быстро реагируют с кислородом, с образованием пероксидов и органических кислот. Таким образом, из ацетальдегида образуется диметилпероксид и уксусная кислота.
Пероксидные соединения окислители, отбеливатели, источники и переносчики кислорода («кислородные батареи»).
Олефины с большим количеством двойных связей также вступают в фотохимические реакции с образованием свободных радикалов. При взаимодействии с кислородом некоторые свободные радикалы могут образовать пероксисоединения, из которых выделяются новые пероксиды, или свободные радикалы, способные вызвать полимеризацию олефинов или стать источником озона.
Олефины (алкены) ненасыщенные ациклические углеводороды, содержащие в молекуле одну двойную связь C=C. Первый член ряда олефинов этилен CH2=CH2, поэтому олефины называются также этиленовыми углеводородами. Содержатся в продуктах переработки нефти и природных газов. Широко используются для синтеза полимеров и др. ценных промышленных продуктов.
Возможность протекания атмосферных реакций в значительной степени зависит от количества твердых частиц в воздухе и от их свойств. Эти частицы создают поверхности, на которых могут протекать реакции, играя, таким образом, роль катализатора, либо за счет адсорбции газов частицы воздействуют на спектр поглощения (например, в диапазоне длин волн поглощенного излучения) и, следовательно, также влияют на интенсивность поглощения излучений и фотохимических реакций. Более того, в ходе широко известных химических реакций твердые частицы могут реагировать с газовыми выбросами промышленности.