Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-44.docx
Скачиваний:
5
Добавлен:
24.09.2019
Размер:
514.19 Кб
Скачать

33. Воспроизведение единицы электрического напряжения на основе эффекта Джозефсона.

Вольт стандартизирован посредством измерения с использованием нестационарного эффекта Джозефсона, при котором для привязки к эталону используется константа Джозефсона,

K{J-90} = 2e/h = 0,4835979 ГГц/мкВ

Этим методом величина вольта однозначно связывается с эталоном частоты, задаваемым цезиевыми часами: при облучении матрицы, состоящей из нескольких тысяч джозефсоновских переходов, микроволновым излучением на частотах от 10 до 80 ГГц, возникает вполне определённое электрическое напряжение, с помощью которого калибруются вольтметры. Эксперименты показали, что этот метод нечувствителен к конкретной реализации установки и не требует введения поправочных коэффициентов.

34. Эффект Мессбауэра. Применение в спектроскопии.

Эффект Мёссбауэра, состоит в резонансном испускании или поглощении гамма-фотонов без изменения фононного спектра излучателя или поглотителя излучения соответственно. Иными словами, эффект Мёссбауэра — это резонансное испускание и поглощение гамма-лучей без отдачи. Имеет существенно квантовую природу и наблюдается при изучении кристаллических, аморфных и порошковых образцов, содержащих один из 87 изотопов 46 элементов.

Метод я́дерного га́мма-резона́нса (Мёссбауэровская спектроскопия) основан на эффекте Мёссба́уэра, который заключается в резонансном поглощении без отдачи атомным ядром монохроматического γ-излучения, испускаемого радиоактивным источником. В абсорбционной мёссбауэровской спектроскопии (наиболее часто применяемой разновидности метода) образец-поглотитель просвечивается гамма-квантами, излучаемыми возбуждённым железом-57 (57Fe), иридием-191 (191Ir) или другим мёссбауэровским изотопом. За поглотителем располагается детектор, с помощью которого измеряется коэффициент поглощения γ-квантов образцом. Образец должен содержать такие же ядра (57Fe, 191Ir и т. д.). Возбуждённые ядра в источнике создаются при распаде соответствующего радиоактивного изотопа (например, 57Co, превращающийся в возбуждённое состояние 57Fe)

Рис. 2. Упрощенная схема мёссбауэровского спектрометра

35. Статический характер квантовых измерений.

Измерение, проводимое надиндивидуальным квантовым объектом, приводит к разрушению его квантового состояния (редукция волновой функции). Это обстоятельство приводит к необходимости статистического (ансамблевого) подхода: каждый акт измерения сопровождается разрушением квантового состояния микрообъекта, однако у экспериментатора в распоряжении имеется не единичный объект, а ансамбль. В силу отмеченной «хрупкости» и «неуловимости» квантового состояния, правильнее будет говорить, что вектор состояния описывает не отдельный объект, а квантовый статистический ансамбль.

36. Определение и примеры нанотехнологии

Нанотехнологией называется совокупность методов обработки, изготовления, изменения состояния, свойств, формы сырья, материала или полуфабриката, осуществляемых в процессе производства продукции. Одна из самых перспективных областей научных исследований (технологии, оперирующие величинами от 1 до 100 нанометров).

Нанотехнологии – это технологии, основанные на манипуляции отдельными атомами и молекулами с целью построения структуры с заранее заданными свойствами.

Особенность нанотехнологии заключается в том, что рассматриваемые процессы и совершаемые действия происходят в нанометровом диапазоне пространственных размеров. «Сырьем» являются отдельные атомы, молекулы, молекулярные системы, а не привычные в традиционной технологии микронные или макроскопические объемы материала, содержащие, по крайней мере, миллиарды атомов и молекул. При этом согласно квантовым концепциям принципиально невозможно устраниться от динамических (изменяющихся во времени) воздействий окружающей среды и производимых измерений нанообъектов.

В отличие от традиционной технологии для нанотехнологии характерен «индивидуальный» подход, при котором внешнее управление достигает отдельных атомов и молекул, что позволяет создавать из них как «бездефектные» материалы с принципиально новыми физико-химическими и биологическими свойствами, так и новые классы устройств с характерными нанометровыми размерами.

Области применения нанотехнологий

Материаловедение. Создание «бездефектных» высокопрочных материалов, материалов с высокой проводимостью, создание «умных» материалов, учитывающих свойства окружающей среды.

Электроника. Конструирование нанометровой элементной базы следующего поколения, нанопроводов, транзисторов, выпрямителей, дисплеев, акустических систем.

Медицина. Проектирование наноинструментария для уничтожения вирусов, локального "ремонта" органов, высокоточной доставки доз лекарств в определенные места живого организма.

Трибология. Определение связи наноструктуры материалов и сил трения и использование этих знаний для изготовления перспективных пар трения.

Управляемые ядерные реакции. Ускорители частиц.

Приборостроение. Создание сканирующих туннельных микроскопов, атомно-силовых микроскопов, магнитных силовых микроскопов, многоострийных систем для молекулярного дизайна, миниатюрных сверхчувствительных датчиков, нанороботов.

Основная проблема в области метрологии:

создание компьютерных моделей систем «прибор-нанообъект» и их калибровка. Автоматизация нанометровых измерений и создание банков данных.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]