Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lyubimaya.docx
Скачиваний:
15
Добавлен:
24.09.2019
Размер:
582.17 Кб
Скачать

10/1. Основные разделы и методы. Содержание и задачи курса. Общенаучное и практическое значение науки о поверхностных явлениях и дисперсных системах. Исторические этапы развития науки.

Основные направления современной коллоидной химии – это термодинамика поверхностных явлений, адсорбция и контактные явления на границах раздела фаз, образование и устойчивость дисперсных систем, физико-химические свойства дисперсных систем, кинетика и механизмы технологических процессов и природных явлений с участием дисперсных систем. Коллоидная химия служит базой для изучения реальных дисперсных систем в живой природе, горных породах, промышленных материалах, а также для обоснования многих технологических процессов в промышленности. Поскольку все продукты питания относятся к дисперсным системам, законы коллоидной химии приобретают первостепенную важность для понимания технологических процессов в пищевой промышленности. В России М.В. Ломоносов – основоположник отечественной физической химии. В 1751г. он изучал эффекты кристаллизации и коагуляции. Разработал методы получения цветных стекол. Т.Е. Ловиц в 1789г. успешно использовал адсорбцию на угле для очистки сахарного сиропа, растительного масла и др.прод. Ф.Ф. Рейс в 1808г. впервые исследовал электрокинетические явления. Отцом современной коллоидной химии считают англ. химика Т. Грэма, который в 1861 году определил и ввел в химию понятие «коллоид». Т.Грэм исследовал диффузию различных веществ через растительные и биологические мембраны. Дж.Гиббс в 70-е годы XIX века заложил основы термодинамики поверхностных процессов. Примерно в то же время Д.И. Менделеев высказал идею о возможности получать любое вещество в коллоидном состоянии. В начале XX века И. Ленгмюр, Н.А.Шилов, М.Поляни и др. исследователи выполнили фундаментальные работы по изучению механизма адсорбционных процессов. Эти работы получили развитие в исследованиях Г.Фрейндлиха, Н.П. Пескова, М.М. Дубинина, Н.Адама. М.Смолуховский и А.Эйнштейн выполнили основополагающие исследования в области молекулярно-кинетических явлений в дисперсных системах. В середине XX века Б.В. Дерягин высказал идеи о расклинивающем давлении в дисперсных системах. Его идеи в дальнейшем были развиты другими учеными (Л.Д.Ландау, Е.И.Фервеем и Дж. Овербеком) и положены в основу теории устойчивости коллоидных систем. Теория двойного слоя на частицах дисперсной фазы была создана Г. Квинке, М Смолуховским и др. Значительный вклад в развитие коллоидной химии внес П.А Ребиндер с сотрудниками, которые развили физико-химическую механику до современного уровня.

10/2.Мицеллообразование. Понятие о ккм. Строение мицелл. Мицеллы пав в водных растворах. Моющее действие мыл.

Мицеллы- нейтральные частицы дисперсной фазы коллоидных размеров, равномерно распределенные в дисперсионной среде. Мицеллообразование в растворах полуколлоидов протекает самопроизвольно, без введения стабилизатора. Мицеллообразование становится возможным при достижении в растворе некоторой критической концентрации полуколлоида (ККМ).ККМ-это сравнительно узкий интервал концентраций, обозначающих предел, ниже которого мицелла практически не обнаруживается, а выше которого практически все добавляемые ПАВ образуют мицеллы. Состав и форма мицеллы определяется концентрацией молекул полуколлоидов. Мицеллы могут быть сферическими, плоскими, цилиндрическими. Число молекул связывающих мицеллу, называют числом агрегации, а произведение мицеллы на число Авогадро- мицеллярной массой. Мицеллу полуколлоидов обычно представляют как некоторое довольно однородное образование из дифильных молекул, полярные группы которых обращены к полярному растворителю, а неполярные радикалы переплетены друг с другом, образуя ядро мицеллы. Вокруг ядра, состоящего из углеводородных радикалов, образуется двойной электрический слой за счет диссоциации ионогенных групп. Поверхность частицы при этом гидратируется. Этим в частности объясняется растворимость мыл в воде. При разбавлении растворов мицеллы распадаются на отдельные молекулы или ионы, в чем проявляется обратимый характер мицеллярных систем ПАВ. Признаки мицеллообразующего ПАВ:1)достаточно низкое значение ККМ, 2)отсутствие при концентрациях, равных или выше ККМ, ассоциатов с числами агрегации (q), существенно меньшими среднего,3)резкий рост q в области ККМ (до значений не менее 20) и его неизменность с дальнейшим увеличением концентрации ПАВ, 4) зависимость кооперативности процесса мицеллообразования от велчины q, тем вышекоопер-ть процесса и тем в более узком концентрационном интервале лежит ККМ. ККМ явл-ся важнейшей хар-кой ПАВ

Моющее действие мыл – это совокупность коллоидно–химических процессов, которые приводят к удалению загрязнений с различных поверхностей и удержанию этих загрязнений в растворе. Оптимальным моющим действием при 25-35ºС обладают ПАВ с алкильной цепью С1214. Общетермпдинамические оценки возможности отделения примесей заключаются в оценках изменения поверх-ной энергии при отрыве частицы грязи от пов-ти тела. Оценку можно выполнить: ΔG = σв-жт-вт-ж.Самопроизвольный отрыв частицы произойдет при условии: σт-ж ≥σв-жт-в

Растворы мыл являются лиофильными термодинамическими устойчивыми обратимыми системами. В равновесии находятся формы мицелл, недиссоциированные молекулы, а также ионы. С повышением температуры и уменьшением концентрации равновесие сдвигается в сторону диссоциации мицелл на молеклы о ионы. В механизме моющего действия обычно выделяют три стадии: 1)смачивание изделия водой;2)вытеснение с поверхности изделия загрязненителя;3)стабилизация загрязнения в растворе. Эффективность первого этапа определяется прежде всего способностью ПАВ уменьшать поверхностное натяжение на границе раздела ткань- загрязнение. Возможными вариантами второй стадии могут быть:1) десорбция грязи вследствие ее вытеснения с поверхности молекулами ПАВ, которые обладают лучшими адсорбционными свойствами;2)солюбилизация загрязнений мицеллами ПАВ. Солюбилизация – это самопроизвольное растворение в воде под действием добавок коллоидных ПАВ обычно не растворимых в воде веществ. Вещество, которое растворяется в мицелле, наз-ся солюбилизат. В процессе солюбилизации мицеллы полуколлоидов втягивают внутрь частицы загрязнений. Обьем мицелл увеличивается. Этот эффект лежит в основе механизма моющего действия ПАВ.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]